Search results
Results From The WOW.Com Content Network
The mathematical manuscripts of Karl Marx are a manuscript collection of Karl Marx 's mathematical notes where he attempted to derive the foundations of infinitesimal calculus from first principles. The notes that Marx took have been collected into four independent treatises: On the Concept of the Derived Function, On the Differential, On the ...
Trigonometric substitution. Partial fractions in integration. Quadratic integral. Proof that 22/7 exceeds π. Trapezium rule. Integral of the secant function. Integral of secant cubed. Arclength. Solid of revolution.
History of calculus. Calculus, originally called infinitesimal calculus, is a mathematical discipline focused on limits, continuity, derivatives, integrals, and infinite series. Many elements of calculus appeared in ancient Greece, then in China and the Middle East, and still later again in medieval Europe and in India.
In the history of calculus, the calculus controversy (German: Prioritätsstreit, lit. 'priority dispute') was an argument between the mathematicians Isaac Newton and Gottfried Wilhelm Leibniz over who had first invented calculus. The question was a major intellectual controversy, which began simmering in 1699 and broke out in full force in 1711.
e. In mathematics, the limit of a function is a fundamental concept in calculus and analysis concerning the behavior of that function near a particular input which may or may not be in the domain of the function. Formal definitions, first devised in the early 19th century, are given below.
The curve was first proposed and studied by René Descartes in 1638. [1] Its claim to fame lies in an incident in the development of calculus.Descartes challenged Pierre de Fermat to find the tangent line to the curve at an arbitrary point since Fermat had recently discovered a method for finding tangent lines.
Calculus. In mathematics, differential calculus is a subfield of calculus that studies the rates at which quantities change. [1] It is one of the two traditional divisions of calculus, the other being integral calculus —the study of the area beneath a curve. [2]
For a period of time encompassing Newton's working life, the discipline of analysis was a subject of controversy in the mathematical community. Although analytic techniques provided solutions to long-standing problems, including problems of quadrature and the finding of tangents, the proofs of these solutions were not known to be reducible to the synthetic rules of Euclidean geometry.