When.com Web Search

  1. Ads

    related to: exponents and powers class 7 worksheet pdf

Search results

  1. Results From The WOW.Com Content Network
  2. Exponentiation - Wikipedia

    en.wikipedia.org/wiki/Exponentiation

    When an exponent is a positive integer, that exponent indicates how many copies of the base are multiplied together. For example, 3 5 = 3 · 3 · 3 · 3 · 3 = 243. The base 3 appears 5 times in the multiplication, because the exponent is 5. Here, 243 is the 5th power of 3, or 3 raised to the 5th power.

  3. Seventh power - Wikipedia

    en.wikipedia.org/wiki/Seventh_power

    In arithmetic and algebra, the seventh power of a number n is the result of multiplying seven instances of n together. So: n 7 = n × n × n × n × n × n × n. Seventh powers are also formed by multiplying a number by its sixth power, the square of a number by its fifth power, or the cube of a number by its fourth power.

  4. Proof of Fermat's Last Theorem for specific exponents

    en.wikipedia.org/wiki/Proof_of_Fermat's_Last...

    The multiplication of two odd numbers is always odd, but the multiplication of an even number with any number is always even. An odd number raised to a power is always odd and an even number raised to power is always even, so for example x n has the same parity as x. Consider any primitive solution (x, y, z) to the equation x n + y n = z n.

  5. Sums of powers - Wikipedia

    en.wikipedia.org/wiki/Sums_of_powers

    In mathematics and statistics, sums of powers occur in a number of contexts: . Sums of squares arise in many contexts. For example, in geometry, the Pythagorean theorem involves the sum of two squares; in number theory, there are Legendre's three-square theorem and Jacobi's four-square theorem; and in statistics, the analysis of variance involves summing the squares of quantities.

  6. Tetration - Wikipedia

    en.wikipedia.org/wiki/Tetration

    Allows for super-powers and super-exponential function by increasing the number of arrows; used in the article on large numbers. Text notation exp _ a ^ n(x) Based on standard notation; convenient for ASCII. J Notation x ^^: (n-1) x: Repeats the exponentiation. See J (programming language) [7] Infinity barrier notation

  7. Prime power - Wikipedia

    en.wikipedia.org/wiki/Prime_power

    In mathematics, a prime power is a positive integer which is a positive integer power of a single prime number. For example: 7 = 7 1, 9 = 3 2 and 64 = 2 6 are prime powers, while 6 = 2 × 3, 12 = 2 2 × 3 and 36 = 6 2 = 2 2 × 3 2 are not. The sequence of prime powers begins:

  8. Binomial theorem - Wikipedia

    en.wikipedia.org/wiki/Binomial_theorem

    In elementary algebra, the binomial theorem (or binomial expansion) describes the algebraic expansion of powers of a binomial.According to the theorem, the power ⁠ (+) ⁠ expands into a polynomial with terms of the form ⁠ ⁠, where the exponents ⁠ ⁠ and ⁠ ⁠ are nonnegative integers satisfying ⁠ + = ⁠ and the coefficient ⁠ ⁠ of each term is a specific positive integer ...

  9. Exponentiation by squaring - Wikipedia

    en.wikipedia.org/wiki/Exponentiation_by_squaring

    Yao's method collects in u first those x i that appear to the highest power ⁠ ⁠; in the next round those with power ⁠ ⁠ are collected in u as well etc. The variable y is multiplied ⁠ h − 1 {\displaystyle h-1} ⁠ times with the initial u , ⁠ h − 2 {\displaystyle h-2} ⁠ times with the next highest powers, and so on.