When.com Web Search

  1. Ad

    related to: semi differential calculator calculus

Search results

  1. Results From The WOW.Com Content Network
  2. Semi-differentiability - Wikipedia

    en.wikipedia.org/wiki/Semi-differentiability

    Let f denote a real-valued function defined on a subset I of the real numbers.. If a ∈ I is a limit point of I ∩ [a,∞) and the one-sided limit + ():= + () exists as a real number, then f is called right differentiable at a and the limit ∂ + f(a) is called the right derivative of f at a.

  3. Calculus of variations - Wikipedia

    en.wikipedia.org/wiki/Calculus_of_Variations

    Calculus of variations is concerned with variations of functionals, which are small changes in the functional's value due to small changes in the function that is its argument. The first variation [ l ] is defined as the linear part of the change in the functional, and the second variation [ m ] is defined as the quadratic part.

  4. Semimartingale - Wikipedia

    en.wikipedia.org/wiki/Semimartingale

    The concept of semimartingales, and the associated theory of stochastic calculus, extends to processes taking values in a differentiable manifold. A process X on the manifold M is a semimartingale if f(X) is a semimartingale for every smooth function f from M to R. (Rogers & Williams 1987, p.

  5. Ricci calculus - Wikipedia

    en.wikipedia.org/wiki/Ricci_calculus

    The exterior derivative of a totally antisymmetric type (0, s) tensor field with components A α 1 ⋅⋅⋅α s (also called a differential form) is a derivative that is covariant under basis transformations. It does not depend on either a metric tensor or a connection: it requires only the structure of a differentiable manifold.

  6. Elasticity of a function - Wikipedia

    en.wikipedia.org/wiki/Elasticity_of_a_function

    An example of semi-elasticity is modified duration in bond trading. The opposite definition is sometimes used in the literature. That is, the term "semi-elasticity" is also sometimes used for the change (not percentage-wise) in f(x) in terms of a percentage change in x [ 9 ] which would be

  7. Finite difference method - Wikipedia

    en.wikipedia.org/wiki/Finite_difference_method

    For example, consider the ordinary differential equation ′ = + The Euler method for solving this equation uses the finite difference quotient (+) ′ to approximate the differential equation by first substituting it for u'(x) then applying a little algebra (multiplying both sides by h, and then adding u(x) to both sides) to get (+) + (() +).

  8. Hessian matrix - Wikipedia

    en.wikipedia.org/wiki/Hessian_matrix

    The second-derivative test for functions of one and two variables is simpler than the general case. In one variable, the Hessian contains exactly one second derivative; if it is positive, then is a local minimum, and if it is negative, then is a local

  9. Semi-implicit Euler method - Wikipedia

    en.wikipedia.org/wiki/Semi-implicit_Euler_method

    In mathematics, the semi-implicit Euler method, also called symplectic Euler, semi-explicit Euler, Euler–Cromer, and Newton–Størmer–Verlet (NSV), is a modification of the Euler method for solving Hamilton's equations, a system of ordinary differential equations that arises in classical mechanics.