Ad
related to: semiconductor physics and devices neamen pdf
Search results
Results From The WOW.Com Content Network
Tyagi wrote one internationally acclaimed book Introduction to Semiconductor Materials and Devices, [5] which is widely used in Electrical Engineering, semiconductor devices and material science undergraduate and postgraduate courses. It was published by John Wiley & Sons on 7 March 1991. M. S. Tyagi: Introduction to Semiconductor Materials and ...
The semiconductor materials used in electronic devices are doped under precise conditions to control the concentration and regions of p- and n-type dopants. A single semiconductor device crystal can have many p- and n-type regions; the p–n junctions between these regions are responsible for the useful electronic behavior.
Outlines of some packaged semiconductor devices. A semiconductor device is an electronic component that relies on the electronic properties of a semiconductor material (primarily silicon, germanium, and gallium arsenide, as well as organic semiconductors) for its function. Its conductivity lies between conductors and insulators. Semiconductor ...
Diffusion current is a current in a semiconductor caused by the diffusion of charge carriers (electrons and/or electron holes).This is the current which is due to the transport of charges occurring because of non-uniform concentration of charged particles in a semiconductor.
The rectifying metal–semiconductor junction forms a Schottky barrier, making a device known as a Schottky diode, while the non-rectifying junction is called an ohmic contact. [1] (In contrast, a rectifying semiconductor–semiconductor junction, the most common semiconductor device today, is known as a p–n junction.)
In physics, the field effect refers to the modulation of the electrical conductivity of a material by the application of an external electric field. In a metal , the electron density that responds to applied fields is so large that an external electric field can penetrate only a very short distance into the material.
Herbert Kroemer (German: [ˈhɛʁbɛʁt ˈkʁøːmɐ] ⓘ; August 25, 1928 – March 8, 2024) was a German-American physicist who, along with Zhores Alferov, received the Nobel Prize in Physics in 2000 for "developing semiconductor heterostructures used in high-speed- and opto-electronics".
A two-dimensional semiconductor (also known as 2D semiconductor) is a type of natural semiconductor with thicknesses on the atomic scale. Geim and Novoselov et al. initiated the field in 2004 when they reported a new semiconducting material graphene , a flat monolayer of carbon atoms arranged in a 2D honeycomb lattice . [ 1 ]