When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Hyperbola - Wikipedia

    en.wikipedia.org/wiki/Hyperbola

    In mathematics, a hyperbola is a type of smooth curve lying in a plane, defined by its geometric properties or by equations for which it is the solution set. A hyperbola has two pieces, called connected components or branches, that are mirror images of each other and resemble two infinite bows.

  3. Hyperbolic sector - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_sector

    For example, the two points (a, 1/a) and (b, 1/b) on the rectangular hyperbola xy = 1, or the corresponding region when this hyperbola is re-scaled and its orientation is altered by a rotation leaving the center at the origin, as with the unit hyperbola. A hyperbolic sector in standard position has a = 1 and b > 1.

  4. Hyperbolic angle - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_angle

    The curve represents xy = 1. A hyperbolic angle has magnitude equal to the area of the corresponding hyperbolic sector, which is in standard position if a = 1. In geometry, hyperbolic angle is a real number determined by the area of the corresponding hyperbolic sector of xy = 1 in Quadrant I of the Cartesian plane.

  5. Constructions in hyperbolic geometry - Wikipedia

    en.wikipedia.org/wiki/Constructions_in...

    When X is close enough to C, ᗉ AXB < ᗉ AXC. This means that at some point, X will be in a position where ᗉ AXB = ᗉ AXC. When X is in this position, it is defined as the foot of the pseudoaltitude from vertex A. [4] The pseudoaltitude would then be the line segment AX. [4] Here, examples of pseudoaltitudes would be A 1 H 1, A 2 H 2, and ...

  6. Hyperbolic trajectory - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_trajectory

    With eccentricity just over 1 the hyperbola is a sharp "v" shape. At e = 2 {\displaystyle e={\sqrt {2}}} the asymptotes are at right angles. With e > 2 {\displaystyle e>2} the asymptotes are more than 120° apart, and the periapsis distance is greater than the semi major axis.

  7. Confocal conic sections - Wikipedia

    en.wikipedia.org/wiki/Confocal_conic_sections

    Considering the pencils of confocal ellipses and hyperbolas (see lead diagram) one gets from the geometrical properties of the normal and tangent at a point (the normal of an ellipse and the tangent of a hyperbola bisect the angle between the lines to the foci). Any ellipse of the pencil intersects any hyperbola orthogonally (see diagram).

  8. Hyperbolic coordinates - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_coordinates

    Starting from (1,1) the hyperbolic sector of unit area ends at (e, 1/e), where e is 2.71828…, according to the development of Leonhard Euler in Introduction to the Analysis of the Infinite (1748). Taking (e, 1/e) as the vertex of rectangle of unit area, and applying again the squeeze that made it from the unit square, yields ( e 2 , e − 2 ...

  9. Hyperbolic geometry - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_geometry

    There are an infinite number of uniform tilings based on the Schwarz triangles (p q r) where 1/p + 1/q + 1/r < 1, where p, q, r are each orders of reflection symmetry at three points of the fundamental domain triangle, the symmetry group is a hyperbolic triangle group. There are also infinitely many uniform tilings that cannot be generated from ...