When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Lorentz force - Wikipedia

    en.wikipedia.org/wiki/Lorentz_force

    Lorentz force acting on fast-moving charged particles in a bubble chamber.Positive and negative charge trajectories curve in opposite directions. In physics, specifically in electromagnetism, the Lorentz force law is the combination of electric and magnetic force on a point charge due to electromagnetic fields.

  3. Coulomb's law - Wikipedia

    en.wikipedia.org/wiki/Coulomb's_law

    In 1767, he conjectured that the force between charges varied as the inverse square of the distance. [15] [16] Coulomb's torsion balance. In 1769, Scottish physicist John Robison announced that, according to his measurements, the force of repulsion between two spheres with charges of the same sign varied as x −2.06. [17]

  4. Mass-to-charge ratio - Wikipedia

    en.wikipedia.org/wiki/Mass-to-charge_ratio

    When charged particles move in electric and magnetic fields the following two laws apply: Lorentz force law: = (+),; Newton's second law of motion: = =; where F is the force applied to the ion, m is the mass of the particle, a is the acceleration, Q is the electric charge, E is the electric field, and v × B is the cross product of the ion's velocity and the magnetic flux density.

  5. Electromagnetic mass - Wikipedia

    en.wikipedia.org/wiki/Electromagnetic_mass

    He also showed that different results for the longitudinal electromagnetic mass can be obtained in Lorentz's theory, depending on whether the mass is calculated from its energy or its momentum, so a non-electromagnetic potential (corresponding to 1 ⁄ 3 of the electron's electromagnetic energy) was necessary to render these masses equal ...

  6. List of electromagnetism equations - Wikipedia

    en.wikipedia.org/wiki/List_of_electromagnetism...

    Lorentz force on a charged particle (of charge q) in motion (velocity v), used as the definition of the E field and B field. Here subscripts e and m are used to differ between electric and magnetic charges. The definitions for monopoles are of theoretical interest, although real magnetic dipoles can be described using pole strengths.

  7. Electron - Wikipedia

    en.wikipedia.org/wiki/Electron

    The invariant mass of an electron is approximately 9.109 × 10 −31 kg, [80] or 5.489 × 10 −4 Da. Due to mass–energy equivalence, this corresponds to a rest energy of 0.511 MeV (8.19 × 10 −14 J). The ratio between the mass of a proton and that of an electron is about 1836.

  8. Kaufmann–Bucherer–Neumann experiments - Wikipedia

    en.wikipedia.org/wiki/Kaufmann–Bucherer...

    In his theory, the longitudinal mass = and the transverse mass =, where is the Lorentz factor and is the rest mass of the electron. [5] The concept of (transverse) electromagnetic mass m T {\displaystyle m_{T}} , which was based on specific models of the electron, was later transmuted into the purely kinematical concept of relativistic mass ...

  9. Klein paradox - Wikipedia

    en.wikipedia.org/wiki/Klein_paradox

    An atomic electron obeying classical mechanics in the presence of a positive charged nucleus experiences a Lorentz force: they should radiate energy and accelerate in to the atomic core. The success of the Bohr model in predicting atomic spectra suggested that the classical mechanics could not be correct.