Search results
Results From The WOW.Com Content Network
The ideal gas equation can be rearranged to give an expression for the molar volume of an ideal gas: = = Hence, for a given temperature and pressure, the molar volume is the same for all ideal gases and is based on the gas constant: R = 8.314 462 618 153 24 m 3 ⋅Pa⋅K −1 ⋅mol −1, or about 8.205 736 608 095 96 × 10 −5 m 3 ⋅atm⋅K ...
Being dimensionless, its unit is 1; it is expressed as a number, e.g., 0.18. It is the same concept as volume percent (vol%) except that the latter is expressed with a denominator of 100, e.g., 18%. The volume fraction coincides with the volume concentration in ideal solutions where the volumes of the constituents are additive (the volume of ...
If one adds 1 litre of water to this solution, the salt concentration is reduced. The diluted solution still contains 10 grams of salt (0.171 moles of NaCl). Mathematically this relationship can be shown by equation: = where c 1 = initial concentration or molarity; V 1 = initial volume
The volume concentration (not to be confused with volume fraction [3]) is defined as the volume of a constituent divided by the volume of the mixture : =. Being dimensionless, it is expressed as a number, e.g., 0.18 or 18%.
m(NaCl) = 2 mol/L × 0.1 L × 58 g/mol = 11.6 g. To create the solution, 11.6 g NaCl is placed in a volumetric flask, dissolved in some water, then followed by the addition of more water until the total volume reaches 100 mL. The density of water is approximately 1000 g/L and its molar mass is 18.02 g/mol (or 1/18.02 = 0.055 mol/g). Therefore ...
The standard unit is the meter cubed per kilogram (m 3 /kg or m 3 ·kg −1). Sometimes specific volume is expressed in terms of the number of cubic centimeters occupied by one gram of a substance. In this case, the unit is the centimeter cubed per gram (cm 3 /g or cm 3 ·g −1). To convert m 3 /kg to cm 3 /g, multiply by 1000; conversely ...
Enjoy a classic game of Hearts and watch out for the Queen of Spades!
In chemistry, the mass concentration ρ i (or γ i) is defined as the mass of a constituent m i divided by the volume of the mixture V. [1]= For a pure chemical the mass concentration equals its density (mass divided by volume); thus the mass concentration of a component in a mixture can be called the density of a component in a mixture.