Search results
Results From The WOW.Com Content Network
The difference between data analysis and data mining is that data analysis is used to test models and hypotheses on the dataset, e.g., analyzing the effectiveness of a marketing campaign, regardless of the amount of data. In contrast, data mining uses machine learning and statistical models to uncover clandestine or hidden patterns in a large ...
Søren Brunak notes that “the patient record becomes as information-rich as possible” and thereby “maximizes the data mining opportunities.” [30] Hence, electronic patient records further expands the possibilities regarding medical data mining thereby opening the door to a vast source of medical data analysis.
Data mining is a particular data analysis technique that focuses on statistical modeling and knowledge discovery for predictive rather than purely descriptive purposes, while business intelligence covers data analysis that relies heavily on aggregation, focusing mainly on business information. [4]
A review and critique of data mining process models in 2009 called the CRISP-DM the "de facto standard for developing data mining and knowledge discovery projects." [ 16 ] Other reviews of CRISP-DM and data mining process models include Kurgan and Musilek's 2006 review, [ 8 ] and Azevedo and Santos' 2008 comparison of CRISP-DM and SEMMA. [ 9 ]
Data Stream Mining (also known as stream learning) is the process of extracting knowledge structures from continuous, rapid data records. A data stream is an ordered sequence of instances that in many applications of data stream mining can be read only once or a small number of times using limited computing and storage capabilities.
Data Mining and Knowledge Discovery is a bimonthly peer-reviewed scientific journal focusing on data mining published by Springer Science+Business Media.It was started in 1996 and launched in 1997 by Usama Fayyad as founding Editor-in-Chief by Kluwer Academic Publishers (later becoming Springer).
Text mining, text data mining (TDM) or text analytics is the process of deriving high-quality information from text. It involves "the discovery by computer of new, previously unknown information, by automatically extracting information from different written resources." [1] Written resources may include websites, books, emails, reviews, and ...
Relational data mining is the data mining technique for relational databases. [1] Unlike traditional data mining algorithms, which look for patterns in a single table (propositional patterns), relational data mining algorithms look for patterns among multiple tables (relational patterns). For most types of propositional patterns, there are ...