Search results
Results From The WOW.Com Content Network
In electrostatics, a perfect conductor is an idealized model for real conducting materials. The defining property of a perfect conductor is that static electric field and the charge density both vanish in its interior. If the conductor has excess charge, it accumulates as an infinitesimally thin layer of surface charge. An external electric ...
Optical conductivity is the property of a material which gives the relationship between the induced current density in the material and the magnitude of the inducing electric field for arbitrary frequencies. [1]
Another common term encountered for both absolute and relative permittivity is the dielectric constant which has been deprecated in physics and engineering [2] as well as in chemistry. [ 3 ] By definition, a perfect vacuum has a relative permittivity of exactly 1 whereas at standard temperature and pressure , air has a relative permittivity of ...
This is done by assuming conditions at the boundaries which are physically correct and numerically solvable in finite time. In some cases, the boundary conditions resume to a simple interface condition. The most usual and simple example is a fully reflecting (electric wall) boundary - the outer medium is considered as a perfect conductor.
The number density of the electron gas was assumed to be =, where Z is the effective number of de-localized electrons per ion, for which Drude used the valence number, A is the atomic mass per mole, [Ashcroft & Mermin 10] is the mass density (mass per unit volume) [Ashcroft & Mermin 10] of the "ions", and N A is the Avogadro constant.
Typically, lightning discharges 30,000 amperes at up to 100 million volts, and emits light, radio waves, and X-rays. [17] Plasma temperatures in lightning might approach 30,000 kelvin (29,727 °C) (53,540 °F), and electron densities may exceed 10 24 m −3. Plasmas are very good conductors and electric potentials play an important role.
Charge carrier density, also known as carrier concentration, denotes the number of charge carriers per volume. In SI units, it is measured in m −3. As with any density, in principle it can depend on position. However, usually carrier concentration is given as a single number, and represents the average carrier density over the whole material.
where λ is the wavelength, c is the speed of light in vacuum and κ = μ 0 c / 2π = 59.95849 Ω ≈ 60.0 Ω is a newly introduced constant (units ohms, or reciprocal siemens, such that σλκ = ε r remains unitless).