When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Mass–energy equivalence - Wikipedia

    en.wikipedia.org/wiki/Mass–energy_equivalence

    The formula defines the energy E of a particle in its rest frame as the product of mass (m) with the speed of light squared (c 2). Because the speed of light is a large number in everyday units (approximately 300 000 km/s or 186 000 mi/s), the formula implies that a small amount of mass corresponds to an enormous amount of energy.

  3. Energy–momentum relation - Wikipedia

    en.wikipedia.org/wiki/Energy–momentum_relation

    This equation holds for a body or system, such as one or more particles, with total energy E, invariant mass m 0, and momentum of magnitude p; the constant c is the speed of light. It assumes the special relativity case of flat spacetime [ 1 ] [ 2 ] [ 3 ] and that the particles are free.

  4. Pair production - Wikipedia

    en.wikipedia.org/wiki/Pair_production

    The photon's energy is converted to particle mass in accordance with Einstein's equation, E = mc 2; where E is energy, m is mass and c is the speed of light. The photon must have higher energy than the sum of the rest mass energies of an electron and positron (2 × 511 keV = 1.022 MeV, resulting in a photon wavelength of 1.2132 pm ) for the ...

  5. Natural units - Wikipedia

    en.wikipedia.org/wiki/Natural_units

    In physics, natural unit systems are measurement systems for which selected physical constants have been set to 1 through nondimensionalization of physical units.For example, the speed of light c may be set to 1, and it may then be omitted, equating mass and energy directly E = m rather than using c as a conversion factor in the typical mass–energy equivalence equation E = mc 2.

  6. Annus mirabilis papers - Wikipedia

    en.wikipedia.org/wiki/Annus_Mirabilis_papers

    The equation sets forth that the energy of a body at rest (E) equals its mass (m) times the speed of light (c) squared, or E = mc 2. If a body gives off the energy L in the form of radiation, its mass diminishes by L/c 2. The fact that the energy withdrawn from the body becomes energy of radiation evidently makes no difference, so that we are ...

  7. Ultrarelativistic limit - Wikipedia

    en.wikipedia.org/wiki/Ultrarelativistic_limit

    In physics, a particle is called ultrarelativistic when its speed is very close to the speed of light c. Notations commonly used are v ≈ c {\displaystyle v\approx c} or β ≈ 1 {\displaystyle \beta \approx 1} or γ ≫ 1 {\displaystyle \gamma \gg 1} where γ {\displaystyle \gamma } is the Lorentz factor , β = v / c {\displaystyle \beta =v/c ...

  8. Speed of light - Wikipedia

    en.wikipedia.org/wiki/Speed_of_Light

    For example, for visible light, the refractive index of glass is typically around 1.5, meaning that light in glass travels at ⁠ c / 1.5 ⁠ ≈ 200 000 km/s (124 000 mi/s); the refractive index of air for visible light is about 1.0003, so the speed of light in air is about 90 km/s (56 mi/s) slower than c.

  9. Electronvolt - Wikipedia

    en.wikipedia.org/wiki/Electronvolt

    It is common in particle physics, where units of mass and energy are often interchanged, to express mass in units of eV/c 2, where c is the speed of light in vacuum (from E = mc 2). It is common to informally express mass in terms of eV as a unit of mass, effectively using a system of natural units with c set to 1. [3]