Search results
Results From The WOW.Com Content Network
Define b by the equations c 2 = a 2 − b 2 for an ellipse and c 2 = a 2 + b 2 for a hyperbola. For a circle, c = 0 so a 2 = b 2, with radius r = a = b. For the parabola, the standard form has the focus on the x-axis at the point (a, 0) and the directrix the line with equation x = −a. In standard form the parabola will always pass through the ...
A consequence is that the equation (in ,) of the parabola determined by 3 points = (,), =,,, with different x coordinates is (if two x coordinates are equal, there is no parabola with directrix parallel to the x axis, which passes through the points) =.
A family of conic sections of varying eccentricity share a focus point and directrix line, including an ellipse (red, e = 1/2), a parabola (green, e = 1), and a hyperbola (blue, e = 2). The conic of eccentricity 0 in this figure is an infinitesimal circle centered at the focus, and the conic of eccentricity ∞ is an infinitesimally separated ...
The free term of a reduced quadratic equation is always the product of its solutions. Hence, if the tangents meet at (x 0, y 0) orthogonally, the following equations hold: = = The last equation is equivalent to =, which is the equation of the directrix.
The directrix is often taken as a plane curve, in a plane not containing the apex, but this is not a requirement. [1] In general, a conical surface consists of two congruent unbounded halves joined by the apex. Each half is called a nappe, and is the union of all the rays that start at the apex and pass through a point of some fixed space curve ...
However, a parabola has only one Dandelin sphere, and thus has only one directrix. Using the Dandelin spheres, it can be proved that any conic section is the locus of points for which the distance from a point (focus) is proportional to the distance from the directrix. [7]
In mathematics, a directrix is a curve associated with a process generating a geometric object, such as: Directrix (conic section) Directrix (generatrix)
The equation for a conic section with apex at the origin and tangent to the y axis is + (+) = alternately = + (+) where R is the radius of curvature at x = 0. This formulation is used in geometric optics to specify oblate elliptical ( K > 0 ), spherical ( K = 0 ), prolate elliptical ( 0 > K > −1 ), parabolic ( K = −1 ), and hyperbolic ( K ...