Search results
Results From The WOW.Com Content Network
Figure 1. A simple bimodal distribution, in this case a mixture of two normal distributions with the same variance but different means. The figure shows the probability density function (p.d.f.), which is an equally-weighted average of the bell-shaped p.d.f.s of the two normal distributions.
This file is made available under the Creative Commons CC0 1.0 Universal Public Domain Dedication. The person who associated a work with this deed has dedicated the work to the public domain by waiving all of their rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law.
A simple bimodal distribution. Figure 3. A bimodal distribution. Note that only the largest peak would correspond to a mode in the strict sense of the definition of mode. In statistics, a unimodal probability distribution or unimodal distribution is a probability distribution which has a single peak.
A bimodal distribution would have two high points rather than one. The shape of a distribution is sometimes characterised by the behaviours of the tails (as in a long or short tail). For example, a flat distribution can be said either to have no tails, or to have short tails.
Specifically, in ESA, a word is represented as a column vector in the tf–idf matrix of the text corpus and a document (string of words) is represented as the centroid of the vectors representing its words. Typically, the text corpus is English Wikipedia, though other corpora including the Open Directory Project have been used. [1]
Download QR code; Print/export ... move to sidebar hide. A uniform tessellation may be: A uniform tiling in two ... Text is available under the Creative Commons ...
For example, the drawings of a random variable uniform over a segment will be equidistributed in the segment, but there will be large gaps compared to a sequence which first enumerates multiples of ε in the segment, for some small ε, in an appropriately chosen way, and then continues to do this for smaller and smaller values of ε.
The basic form as given by Box and Muller takes two samples from the uniform distribution on the interval (0,1) and maps them to two standard, normally distributed samples. The polar form takes two samples from a different interval, [−1,+1] , and maps them to two normally distributed samples without the use of sine or cosine functions.