Search results
Results From The WOW.Com Content Network
Dual-polarization interferometry; Fabry–Pérot interferometer; Fizeau interferometer; Fourier-transform interferometer; Fresnel interferometer (e.g. Fresnel biprism, Fresnel mirror or Lloyd's mirror) Fringes of Equal Chromatic Order interferometer (FECO) Gabor hologram; Gires–Tournois etalon; Heterodyne interferometer (see heterodyne ...
Figure 1. The light path through a Michelson interferometer.The two light rays with a common source combine at the half-silvered mirror to reach the detector. They may either interfere constructively (strengthening in intensity) if their light waves arrive in phase, or interfere destructively (weakening in intensity) if they arrive out of phase, depending on the exact distances between the ...
Here is a list of currently existing astronomical optical interferometers (i.e. operating from visible to mid-infrared wavelengths), and some parameters describing their performance. Current performance of ground-based interferometers
A simple two-element optical interferometer. Light from two small telescopes (shown as lenses) is combined using beam splitters at detectors 1, 2, 3 and 4.The elements create a 1/4 wave delay in the light, allowing the phase and amplitude of the interference visibility to be measured, thus giving information about the shape of the light source.
This category describes the general techniques and general types of instruments used in interferometry. Specific instruments are listed in Category:Interferometers . The main article for this category is Interferometry .
Main page; Contents; Current events; Random article; About Wikipedia; Contact us
This is a list of radio telescopes – over one hundred – that are or have been used for radio astronomy. The list includes both single dishes and interferometric arrays. The list is sorted by region, then by name; unnamed telescopes are in reverse size order at the end of the list.
When using interferometry, a complex system of mirrors brings the light from the different telescopes to the astronomical instruments where it is combined and processed. This is technically demanding as the light paths must be kept equal to within 1/1000 mm (the same order as the wavelength of light) over distances of a few hundred metres.