Search results
Results From The WOW.Com Content Network
This is a method that uses the series solution for a differential equation, where we assume the solution takes the form of a series. This is usually the method we use for complicated ordinary differential equations. The solution of the hypergeometric differential equation is very important. For instance, Legendre's differential equation can be ...
Some solutions of a differential equation having a regular singular point with indicial roots = and .. In mathematics, the method of Frobenius, named after Ferdinand Georg Frobenius, is a way to find an infinite series solution for a linear second-order ordinary differential equation of the form ″ + ′ + = with ′ and ″.
The general Legendre equation reads ″ ′ + [(+)] =, where the numbers λ and μ may be complex, and are called the degree and order of the relevant function, respectively. . The polynomial solutions when λ is an integer (denoted n), and μ = 0 are the Legendre polynomials P n; and when λ is an integer (denoted n), and μ = m is also an integer with | m | < n are the associated Legendre ...
The equation has two linearly independent solutions. At each of the three singular points 0, 1, ∞, there are usually two special solutions of the form x s times a holomorphic function of x, where s is one of the two roots of the indicial equation and x is a local variable vanishing at a regular singular point. This gives 3 × 2 = 6 special ...
Legendre polynomials occur in the solution of Laplace's equation of the static potential, ∇ 2 Φ(x) = 0, in a charge-free region of space, using the method of separation of variables, where the boundary conditions have axial symmetry (no dependence on an azimuthal angle).
In mathematics, Legendre's equation is a Diophantine equation of the form: + + = The equation is named for Adrien-Marie Legendre who proved it in 1785 that it is solvable in integers x, y, z, not all zero, if and only if −bc, −ca and −ab are quadratic residues modulo a, b and c, respectively, where a, b, c are nonzero, square-free, pairwise relatively prime integers and also not all ...
The equation (1) is completely integrable if for each (,), there is a neighborhood U of x 0 such that (1) has a unique solution u(x) defined on U such that u(x 0)=y 0. The conditions of the Frobenius theorem depend on whether the underlying field is R or C.
For each formal Frobenius series solution of =, must be a root of the indicial polynomial at , i. e., needs to solve the indicial equation =. [ 1 ] If ξ {\displaystyle \xi } is an ordinary point, the resulting indicial equation is given by α n _ = 0 {\displaystyle \alpha ^{\underline {n}}=0} .