When.com Web Search

  1. Ads

    related to: rules of exponents roots

Search results

  1. Results From The WOW.Com Content Network
  2. Exponentiation - Wikipedia

    en.wikipedia.org/wiki/Laws_of_exponents

    This makes the principal n th root a continuous function in the whole complex plane, except for negative real values of the radicand. This function equals the usual n th root for positive real radicands. For negative real radicands, and odd exponents, the principal n th root is not real, although the usual n th root is real.

  3. Descartes' rule of signs - Wikipedia

    en.wikipedia.org/wiki/Descartes'_rule_of_signs

    To find the number of negative roots, change the signs of the coefficients of the terms with odd exponents, i.e., apply Descartes' rule of signs to the polynomial = + + This polynomial has two sign changes, as the sequence of signs is (−, +, +, −) , meaning that this second polynomial has two or zero positive roots; thus the original ...

  4. nth root - Wikipedia

    en.wikipedia.org/wiki/Nth_root

    A root of degree 2 is called a square root and a root of degree 3, a cube root. Roots of higher degree are referred by using ordinal numbers, as in fourth root, twentieth root, etc. The computation of an n th root is a root extraction. For example, 3 is a square root of 9, since 3 2 = 9, and −3 is also a square root of 9, since (−3) 2 = 9.

  5. Order of operations - Wikipedia

    en.wikipedia.org/wiki/Order_of_operations

    When exponents were introduced in the 16th and 17th centuries, they were given precedence over both addition and multiplication and placed as a superscript to the right of their base. [2] Thus 3 + 5 2 = 28 and 3 × 5 2 = 75. These conventions exist to avoid notational ambiguity while allowing notation to remain brief. [4]

  6. Tetration - Wikipedia

    en.wikipedia.org/wiki/Tetration

    The two inverses of tetration are called super-root and super-logarithm, analogous to the nth root and the logarithmic functions. None of the three functions are elementary . Tetration is used for the notation of very large numbers .

  7. List of logarithmic identities - Wikipedia

    en.wikipedia.org/wiki/List_of_logarithmic_identities

    Logarithms and exponentials with the same base cancel each other. This is true because logarithms and exponentials are inverse operations—much like the same way multiplication and division are inverse operations, and addition and subtraction are inverse operations.

  8. Algebraic operation - Wikipedia

    en.wikipedia.org/wiki/Algebraic_operation

    In mathematics, a basic algebraic operation is any one of the common operations of elementary algebra, which include addition, subtraction, multiplication, division, raising to a whole number power, and taking roots (fractional power). [1] These operations may be performed on numbers, in which case they are often called arithmetic operations.

  9. Arithmetic - Wikipedia

    en.wikipedia.org/wiki/Arithmetic

    Roots are a special type of exponentiation using a fractional exponent. For example, the square root of a number is the same as raising the number to the power of 1 2 {\displaystyle {\tfrac {1}{2}}} and the cube root of a number is the same as raising the number to the power of 1 3 {\displaystyle {\tfrac {1}{3}}} .