When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Oxygen–hemoglobin dissociation curve - Wikipedia

    en.wikipedia.org/wiki/Oxygenhemoglobin...

    The T state has a lower affinity for oxygen than the R state, so with increased acidity, the hemoglobin binds less O 2 for a given P O2 (and more H +). This is known as the Bohr effect. [4] A reduction in the total binding capacity of hemoglobin to oxygen (i.e. shifting the curve down, not just to the right) due to reduced pH is called the root ...

  3. Hemoglobin - Wikipedia

    en.wikipedia.org/wiki/Hemoglobin

    The sigmoidal shape of hemoglobin's oxygen-dissociation curve results from cooperative binding of oxygen to hemoglobin. Hence, blood with high carbon dioxide levels is also lower in pH (more acidic). Hemoglobin can bind protons and carbon dioxide, which causes a conformational change in the protein and facilitates the release of oxygen.

  4. Bohr effect - Wikipedia

    en.wikipedia.org/wiki/Bohr_effect

    Hemoglobin's oxygen binding affinity (see oxygen–haemoglobin dissociation curve) is inversely related both to acidity and to the concentration of carbon dioxide. [1] That is, the Bohr effect refers to the shift in the oxygen dissociation curve caused by changes in the concentration of carbon dioxide or the pH of the environment.

  5. Cooperativity - Wikipedia

    en.wikipedia.org/wiki/Cooperativity

    An example of positive cooperativity is the binding of oxygen to hemoglobin. One oxygen molecule can bind to the ferrous iron of a heme molecule in each of the four chains of a hemoglobin molecule. Deoxy-hemoglobin has a relatively low affinity for oxygen, but when one molecule binds to a single heme, the oxygen affinity increases, allowing the ...

  6. Heme - Wikipedia

    en.wikipedia.org/wiki/Heme

    Binding of oxygen to a heme prosthetic group. Heme (American English), or haem (Commonwealth English, both pronounced /hi:m/ HEEM), is a ring-shaped iron-containing molecular component of hemoglobin, which is necessary to bind oxygen in the bloodstream. It is composed of four pyrrole rings with 2 vinyl and 2 propionic acid side chains. [1]

  7. Haldane effect - Wikipedia

    en.wikipedia.org/wiki/Haldane_effect

    This amount of carbaminohemoglobin formed is inversely proportional to the amount of oxygen attached to hemoglobin. Thus, at lower oxygen saturation, more carbaminohemoglobin is formed. These dynamics explain the relative difference in hemoglobin's affinity for carbon dioxide depending on oxygen levels known as the Haldane effect. [2]

  8. Hemoprotein - Wikipedia

    en.wikipedia.org/wiki/Hemoprotein

    It binds to the 6th coordination position of the iron, His-E7 of the myoglobin binds to the oxygen that is now covalently bonded to the iron. The same is true for hemoglobin; however, being a protein with four subunits, hemoglobin contains four heme units in total, allowing four oxygen molecules in total to bind to the protein.

  9. Hill equation (biochemistry) - Wikipedia

    en.wikipedia.org/wiki/Hill_equation_(biochemistry)

    Plot of the % saturation of oxygen binding to haemoglobin, as a function of the amount of oxygen present (expressed as an oxygen pressure). Data (red circles) and Hill equation fit (black curve) from original 1910 paper of Hill. [6] The Hill equation is commonly expressed in the following ways. [2] [7] [8]