When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Kernel method - Wikipedia

    en.wikipedia.org/wiki/Kernel_method

    Kernel classifiers were described as early as the 1960s, with the invention of the kernel perceptron. [3] They rose to great prominence with the popularity of the support-vector machine (SVM) in the 1990s, when the SVM was found to be competitive with neural networks on tasks such as handwriting recognition.

  3. Bag-of-words model in computer vision - Wikipedia

    en.wikipedia.org/wiki/Bag-of-words_model_in...

    Since images are represented based on the BoW model, any discriminative model suitable for text document categorization can be tried, such as support vector machine (SVM) [2] and AdaBoost. [11] Kernel trick is also applicable when kernel based classifier is used, such as SVM. Pyramid match kernel is newly developed one based on the BoW model.

  4. Feature hashing - Wikipedia

    en.wikipedia.org/wiki/Feature_hashing

    In a typical document classification task, the input to the machine learning algorithm (both during learning and classification) is free text. From this, a bag of words (BOW) representation is constructed: the individual tokens are extracted and counted, and each distinct token in the training set defines a feature (independent variable) of each of the documents in both the training and test sets.

  5. Support vector machine - Wikipedia

    en.wikipedia.org/wiki/Support_vector_machine

    Structured support-vector machine is an extension of the traditional SVM model. While the SVM model is primarily designed for binary classification, multiclass classification, and regression tasks, structured SVM broadens its application to handle general structured output labels, for example parse trees, classification with taxonomies ...

  6. Bag-of-words model - Wikipedia

    en.wikipedia.org/wiki/Bag-of-words_model

    It disregards word order (and thus most of syntax or grammar) but captures multiplicity. The bag-of-words model is commonly used in methods of document classification where, for example, the (frequency of) occurrence of each word is used as a feature for training a classifier. [1] It has also been used for computer vision. [2]

  7. Least-squares support vector machine - Wikipedia

    en.wikipedia.org/wiki/Least-squares_support...

    Least-squares support-vector machines (LS-SVM) for statistics and in statistical modeling, are least-squares versions of support-vector machines (SVM), which are a set of related supervised learning methods that analyze data and recognize patterns, and which are used for classification and regression analysis.

  8. AOL Mail

    mail.aol.com

    Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!

  9. String kernel - Wikipedia

    en.wikipedia.org/wiki/String_kernel

    The string kernel method is to be contrasted with earlier approaches for text classification where feature vectors only indicated the presence or absence of a word. Not only does it improve on these approaches, but it is an example for a whole class of kernels adapted to data structures, which began to appear at the turn of the 21st century.