When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Capacitance - Wikipedia

    en.wikipedia.org/wiki/Capacitance

    Capacitance is the ability of an object to store electric charge. It is measured by the charge in response to a difference in electric potential, expressed as the ratio of those quantities. Commonly recognized are two closely related notions of capacitance: self capacitance and mutual capacitance.

  3. Farad - Wikipedia

    en.wikipedia.org/wiki/Farad

    The capacitance of a capacitor is one farad when one coulomb of charge changes the potential between the plates by one volt. [1] [2] Equally, one farad can be described as the capacitance which stores a one-coulomb charge across a potential difference of one volt. [3] The relationship between capacitance, charge, and potential difference is linear.

  4. Capacitor - Wikipedia

    en.wikipedia.org/wiki/Capacitor

    The capacitance of certain capacitors decreases as the component ages. In ceramic capacitors, this is caused by degradation of the dielectric. The type of dielectric, ambient operating and storage temperatures are the most significant aging factors, while the operating voltage usually has a smaller effect, i.e., usual capacitor design is to ...

  5. Electricity - Wikipedia

    en.wikipedia.org/wiki/Electricity

    The unit of capacitance is the farad, named after Michael Faraday, and given the symbol F: one farad is the capacitance that develops a potential difference of one volt when it stores a charge of one coulomb. A capacitor connected to a voltage supply initially causes a current as it accumulates charge; this current will however decay in time as ...

  6. Elastance - Wikipedia

    en.wikipedia.org/wiki/Elastance

    The definition of capacitance (C) is the charge (Q) stored per unit voltage (V).= Elastance (S) is the reciprocal of capacitance, thus, [1]= . Expressing the values of capacitors as elastance is not commonly done by practical electrical engineers, but can be convenient for capacitors in series since their total elastance is simply the sum of their individual elastances.

  7. Electrical susceptance - Wikipedia

    en.wikipedia.org/wiki/Electrical_susceptance

    As a result, device admittance is frequency-dependent, and the simple electrostatic formula for capacitance, = , is not applicable. A more general definition of capacitance, encompassing electrostatic formula, is: [6]

  8. RC time constant - Wikipedia

    en.wikipedia.org/wiki/RC_time_constant

    where resistance in ohms and capacitance in farads yields the time constant in seconds or the cutoff frequency in hertz (Hz). The cutoff frequency when expressed as an angular frequency ( ω c = 2 π f c ) {\displaystyle (\omega _{c}{=}2\pi f_{c})} is simply the reciprocal of the time constant.

  9. Quantum capacitance - Wikipedia

    en.wikipedia.org/wiki/Quantum_capacitance

    Quantum capacitance, [1] also known as chemical capacitance [2] and electrochemical capacitance ¯, [3] was first theoretically introduced by Serge Luryi (1988), [1] and is defined as the variation of electrical charge with respect to the variation of electrochemical potential ¯, i.e., ¯ = ¯. [3]