Search results
Results From The WOW.Com Content Network
Thus, the degree of dissociation of a weak electrolyte is proportional to the inverse square root of the concentration, or the square root of the dilution. The concentration of any one ionic species is given by the root of the product of the dissociation constant and the concentration of the electrolyte.
The higher the percentage, the stronger the electrolyte. Thus, even if a substance is not very soluble, but does dissociate completely into ions, the substance is defined as a strong electrolyte. Similar logic applies to a weak electrolyte. Strong acids and bases are good examples, such as HCl and H 2 SO 4. These will all exist as ions in an ...
For most non-electrolytes dissolved in water, the van 't Hoff factor is essentially 1. For most ionic compounds dissolved in water, the van 't Hoff factor is equal to the number of discrete ions in a formula unit of the substance. This is true for ideal solutions only, as occasionally ion pairing occurs in solution. At a given instant a small ...
For weak electrolytes (i.e. incompletely dissociated electrolytes), however, the molar conductivity strongly depends on concentration: The more dilute a solution, the greater its molar conductivity, due to increased ionic dissociation. For example, acetic acid has a higher molar conductivity in dilute aqueous acetic acid than in concentrated ...
Instead, the solution becomes ever more fully dissociated at weaker concentrations, and for low concentrations of "well behaved" weak electrolytes, the degree of dissociation of the weak electrolyte becomes proportional to the inverse square root of the concentration. Typical weak electrolytes are weak acids and weak bases. The concentration of ...
Sodium acetate is a strong electrolyte, so it dissociates completely in solution. Acetic acid is a weak acid, so it only ionizes slightly. According to Le Chatelier's principle, the addition of acetate ions from sodium acetate will suppress the ionization of acetic acid and shift its equilibrium to the left. Thus the percent dissociation of the ...
An electrolyte in a solution may be described as "concentrated" if it has a high concentration of ions, or "dilute" if it has a low concentration. If a high proportion of the solute dissociates to form free ions, the electrolyte is strong; if most of the solute does not dissociate, the electrolyte is weak.
The ionic strength of a solution is a measure of the concentration of ions in that solution. Ionic compounds, when dissolved in water, dissociate into ions. The total electrolyte concentration in solution will affect important properties such as the dissociation constant or the solubility of different salts.