Search results
Results From The WOW.Com Content Network
The shear modulus is one of several quantities for measuring the stiffness of materials. All of them arise in the generalized Hooke's law: . Young's modulus E describes the material's strain response to uniaxial stress in the direction of this stress (like pulling on the ends of a wire or putting a weight on top of a column, with the wire getting longer and the column losing height),
Relations for other moduli are found in the (λ, G) row of the conversions table at the end of this article. Although the shear modulus, μ, must be positive, the Lamé's first parameter, λ, can be negative, in principle; however, for most materials it is also positive. The parameters are named after Gabriel Lamé.
The shear modulus or modulus of rigidity (G or Lamé second parameter) describes an object's tendency to shear (the deformation of shape at constant volume) when acted upon by opposing forces; it is defined as shear stress over shear strain. The shear modulus is part of the derivation of viscosity.
For instance, Young's modulus applies to extension/compression of a body, whereas the shear modulus applies to its shear. [1] Young's modulus and shear modulus are only for solids, whereas the bulk modulus is for solids, liquids, and gases. The elasticity of materials is described by a stress–strain curve, which shows the relation between ...
Elastic properties describe the reversible deformation (elastic response) of a material to an applied stress. They are a subset of the material properties that provide a quantitative description of the characteristics of a material, like its strength. Material properties are most often characterized by a set of numerical parameters called moduli.
The elasticity tensor is a fourth-rank tensor describing the stress-strain relation in a linear elastic material. [ 1 ] [ 2 ] Other names are elastic modulus tensor and stiffness tensor . Common symbols include C {\displaystyle \mathbf {C} } and Y {\displaystyle \mathbf {Y} } .
[1]: 58 For example, low-carbon steel generally exhibits a very linear stress–strain relationship up to a well-defined yield point. The linear portion of the curve is the elastic region, and the slope of this region is the modulus of elasticity or Young's modulus. Plastic flow initiates at the upper yield point and continues at the lower ...
G is the modulus of rigidity (shear modulus) of the material J is the torsional constant. Inverting the previous relation, we can define two quantities; the torsional rigidity, = with SI units N⋅m 2 /rad. And the torsional stiffness,