When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Differentiable function - Wikipedia

    en.wikipedia.org/wiki/Differentiable_function

    If x 0 is an interior point in the domain of a function f, then f is said to be differentiable at x 0 if the derivative ′ exists. In other words, the graph of f has a non-vertical tangent line at the point (x 0, f(x 0)). f is said to be differentiable on U if it is differentiable at every point of U.

  3. Semi-differentiability - Wikipedia

    en.wikipedia.org/wiki/Semi-differentiability

    A function is differentiable at an interior point a of its domain if and only if it is semi-differentiable at a and the left derivative is equal to the right derivative. An example of a semi-differentiable function, which is not differentiable, is the absolute value function () = | |, at a = 0.

  4. Derivative - Wikipedia

    en.wikipedia.org/wiki/Derivative

    Even a function with a smooth graph is not differentiable at a point where its tangent is vertical: For instance, the function given by () = / is not differentiable at =. In summary, a function that has a derivative is continuous, but there are continuous functions that do not have a derivative. [13]

  5. Rolle's theorem - Wikipedia

    en.wikipedia.org/wiki/Rolle's_theorem

    This function is continuous on the closed interval [−r, r] and differentiable in the open interval (−r, r), but not differentiable at the endpoints −r and r. Since f (−r) = f (r), Rolle's theorem applies, and indeed, there is a point where the derivative of f is zero. The theorem applies even when the function cannot be differentiated ...

  6. Critical point (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Critical_point_(mathematics)

    A critical point of a function of a single real variable, f (x), is a value x 0 in the domain of f where f is not differentiable or its derivative is 0 (i.e. ′ =). [2] A critical value is the image under f of a critical point.

  7. Smoothness - Wikipedia

    en.wikipedia.org/wiki/Smoothness

    However, this function is not continuously differentiable. A smooth function that is not analytic. The function = {, < is continuous, but not differentiable at x = 0, so it is of class C 0, but not of class C 1.

  8. Weierstrass function - Wikipedia

    en.wikipedia.org/wiki/Weierstrass_function

    Despite being differentiable nowhere, the function is continuous: Since the terms of the infinite series which defines it are bounded by and this has finite sum for < <, convergence of the sum of the terms is uniform by the Weierstrass M-test with =.

  9. Differentiation rules - Wikipedia

    en.wikipedia.org/wiki/Differentiation_rules

    In other words, the value of the constant function, y, will not change as the value of x increases or decreases. At each point, the derivative is the slope of a line that is tangent to the curve at that point. Note: the derivative at point A is positive where green and dash–dot, negative where red and dashed, and zero where black and solid.