Search results
Results From The WOW.Com Content Network
Set-builder notation can be used to describe a set that is defined by a predicate, that is, a logical formula that evaluates to true for an element of the set, and false otherwise. [2] In this form, set-builder notation has three parts: a variable, a colon or vertical bar separator, and a predicate. Thus there is a variable on the left of the ...
SET Language 2 (SETL2), a backward incompatible descendant of SETL, was created by Kirk Snyder of the Courant Institute of Mathematical Sciences at New York University in the late 1980s. [14] Like its predecessor, it is based on the theory and notation of finite sets, but has also been influenced in syntax and style by the Ada language. [14]
The notation / is also used, and is less ambiguous. Denotes the set of rational numbers (fractions of two integers). It is often denoted also by . Denotes the set of p-adic numbers, where p is a prime number.
A set of polygons in an Euler diagram This set equals the one depicted above since both have the very same elements.. In mathematics, a set is a collection of different [1] things; [2] [3] [4] these things are called elements or members of the set and are typically mathematical objects of any kind: numbers, symbols, points in space, lines, other geometrical shapes, variables, or even other ...
Universe set and complement notation The notation L ∁ = def X ∖ L . {\displaystyle L^{\complement }~{\stackrel {\scriptscriptstyle {\text{def}}}{=}}~X\setminus L.} may be used if L {\displaystyle L} is a subset of some set X {\displaystyle X} that is understood (say from context, or because it is clearly stated what the superset X ...
So the intersection of the empty family should be the universal set (the identity element for the operation of intersection), [4] but in standard set theory, the universal set does not exist. However, when restricted to the context of subsets of a given fixed set X {\displaystyle X} , the notion of the intersection of an empty collection of ...
A set for which membership can be decided by a recursive procedure or algorithm, also known as a decidable or computable set. recursively enumerable set A set for which there exists a Turing machine that will list all members of the set, possibly without halting if the set is infinite; also called "semi-decidable set" or "Turing recognizable set".
The Miscellaneous Mathematical Symbols-A block (U+27C0–U+27EF) contains characters for mathematical, logical, and database notation. Miscellaneous Mathematical Symbols-A [1] Official Unicode Consortium code chart (PDF)