Search results
Results From The WOW.Com Content Network
In mathematics, the empty set or void set is the unique set having no elements; its size or cardinality (count of elements in a set) is zero. [1] Some axiomatic set theories ensure that the empty set exists by including an axiom of empty set , while in other theories, its existence can be deduced.
Note that a null set is not necessarily an empty set. Common notations for the empty set include "{}", "∅", and "". The latter two symbols were introduced by the Bourbaki group (specifically André Weil) in 1939, inspired by the letter Ø in the Danish and Norwegian alphabets (and not related in any way to the Greek letter Φ). [2] Empty sets ...
In set theory, the empty set, that is, the set with zero elements, denoted "{}" or "∅", may also be called null set. [3] [5] In measure theory, a null set is a (possibly nonempty) set with zero measure. A null space of a mapping is the part of the domain that is mapped into the null element of the image (the inverse image of the null element).
The power set of the empty set is a singleton whose only element is the empty set. For a non-empty set S, let be any element of the set and T its relative complement; then the power set of S is a union of a power set of T and a power set of T whose each element is expanded with the e element.
Furthermore, one sometimes considers set theories in which there are no infinite sets, and then the axiom of empty set may still be required. However, any axiom of set theory or logic that implies the existence of any set will imply the existence of the empty set, if one has the axiom schema of separation. This is true, since the empty set is a ...
In set theory, the union (denoted by ∪) of a collection of sets is the set of all elements in the collection. [1] It is one of the fundamental operations through which sets can be combined and related to each other. A nullary union refers to a union of zero ( ) sets and it is by definition equal to the empty set.
The unique order on the empty set, ∅, is a total order. Any set of cardinal numbers or ordinal numbers (more strongly, these are well-orders). If X is any set and f an injective function from X to a totally ordered set then f induces a total ordering on X by setting x 1 ≤ x 2 if and only if f(x 1) ≤ f(x 2).
In summary, a set of the real numbers is an interval, if and only if it is an open interval, a closed interval, or a half-open interval. [4] [5] A degenerate interval is any set consisting of a single real number (i.e., an interval of the form [a, a]). [6] Some authors include the empty set in this definition.