Search results
Results From The WOW.Com Content Network
The central dogma of molecular biology deals with the flow of genetic information within a biological system. It is often stated as "DNA makes RNA, and RNA makes protein", [1] although this is not its original meaning. It was first stated by Francis Crick in 1957, [2] [3] then published in 1958: [4] [5] The Central Dogma.
Initiation of translation is regulated by the accessibility of ribosomes to the Shine-Dalgarno sequence. This stretch of four to nine purine residues are located upstream the initiation codon and hybridize to a pyrimidine-rich sequence near the 3' end of the 16S RNA within the 30S bacterial ribosomal subunit . [ 1 ]
Eukaryotic translation is the biological process by which messenger RNA is translated into proteins in eukaryotes. It consists of four phases: initiation, elongation, termination, and recapping. It consists of four phases: initiation, elongation, termination, and recapping.
The pathway from DNA to protein expression fundamental to the central dogma of biology. [2] In 1956, Francis Crick proposed what is now known as the "central dogma" of biology: [3] DNA encodes the genetic information required for an organism to carry out its life cycle. In effect, DNA serves as the "hard drive" which stores genetic data.
The transcription-translation process description, mentioning only the most basic "elementary" processes, consists of: production of mRNA molecules (including splicing), initiation of these molecules with help of initiation factors (e.g., the initiation can include the circularization step though it is not universally required),
Any step of gene expression may be modulated, from signaling to transcription to post-translational modification of a protein. The following is a list of stages where gene expression is regulated, where the most extensively utilized point is transcription initiation, the first stage in transcription: [citation needed] Signal transduction
Translation promotes transcription elongation and regulates transcription termination. Functional coupling between transcription and translation is caused by direct physical interactions between the ribosome and RNA polymerase ("expressome complex"), ribosome-dependent changes to nascent mRNA secondary structure which affect RNA polymerase activity (e.g. "attenuation"), and ribosome-dependent ...
After being produced, the stability and distribution of the different transcripts is regulated (post-transcriptional regulation) by means of RNA binding protein (RBP) that control the various steps and rates controlling events such as alternative splicing, nuclear degradation (), processing, nuclear export (three alternative pathways), sequestration in P-bodies for storage or degradation and ...