When.com Web Search

  1. Ads

    related to: associative property of algebra practice

Search results

  1. Results From The WOW.Com Content Network
  2. Associative property - Wikipedia

    en.wikipedia.org/wiki/Associative_property

    In mathematics, the associative property [1] is a property of some binary operations that means that rearranging the parentheses in an expression will not change the result. In propositional logic , associativity is a valid rule of replacement for expressions in logical proofs .

  3. Associative algebra - Wikipedia

    en.wikipedia.org/wiki/Associative_algebra

    In mathematics, an associative algebra A over a commutative ring (often a field) K is a ring A together with a ring homomorphism from K into the center of A.This is thus an algebraic structure with an addition, a multiplication, and a scalar multiplication (the multiplication by the image of the ring homomorphism of an element of K).

  4. Power associativity - Wikipedia

    en.wikipedia.org/wiki/Power_associativity

    A substitution law holds for real power-associative algebras with unit, which basically asserts that multiplication of polynomials works as expected. For f a real polynomial in x, and for any a in such an algebra define f(a) to be the element of the algebra resulting from the obvious substitution of a into f.

  5. List of set identities and relations - Wikipedia

    en.wikipedia.org/wiki/List_of_set_identities_and...

    The following proposition says that for any set , the power set of , ordered by inclusion, is a bounded lattice, and hence together with the distributive and complement laws above, show that it is a Boolean algebra.

  6. Operator associativity - Wikipedia

    en.wikipedia.org/wiki/Operator_associativity

    An operation that is mathematically associative, by definition requires no notational associativity. (For example, addition has the associative property, therefore it does not have to be either left associative or right associative.) An operation that is not mathematically associative, however, must be notationally left-, right-, or non ...

  7. Proofs involving the addition of natural numbers - Wikipedia

    en.wikipedia.org/wiki/Proofs_involving_the...

    The base case b = 0 follows immediately from the identity element property (0 is an additive identity), which has been proved above: a + 0 = a = 0 + a. Next we will prove the base case b = 1, that 1 commutes with everything, i.e. for all natural numbers a, we have a + 1 = 1 + a.