When.com Web Search

  1. Ad

    related to: associative property subtraction

Search results

  1. Results From The WOW.Com Content Network
  2. Associative property - Wikipedia

    en.wikipedia.org/wiki/Associative_property

    In mathematics, the associative property [1] is a property of some binary operations that means that rearranging the parentheses in an expression will not change the result. In propositional logic , associativity is a valid rule of replacement for expressions in logical proofs .

  3. Operator associativity - Wikipedia

    en.wikipedia.org/wiki/Operator_associativity

    In order to reflect normal usage, addition, subtraction, multiplication, and division operators are usually left-associative, [1] [2] [3] while for an exponentiation operator (if present) [4] [better source needed] there is no general agreement. Any assignment operators are typically right-associative. To prevent cases where operands would be ...

  4. Proofs involving the addition of natural numbers - Wikipedia

    en.wikipedia.org/wiki/Proofs_involving_the...

    The base case b = 0 follows immediately from the identity element property (0 is an additive identity), which has been proved above: a + 0 = a = 0 + a. Next we will prove the base case b = 1, that 1 commutes with everything, i.e. for all natural numbers a, we have a + 1 = 1 + a.

  5. List of set identities and relations - Wikipedia

    en.wikipedia.org/wiki/List_of_set_identities_and...

    The great variety and (relative) complexity of formulas involving set subtraction (compared to those without it) is in part due to the fact that unlike ,, and , set subtraction is neither associative nor commutative and it also is not left distributive over ,, , or even over itself.

  6. Commutative property - Wikipedia

    en.wikipedia.org/wiki/Commutative_property

    The associative property is closely related to the commutative property. The associative property of an expression containing two or more occurrences of the same operator states that the order operations are performed in does not affect the final result, as long as the order of terms does not change. In contrast, the commutative property states ...

  7. Matrix multiplication - Wikipedia

    en.wikipedia.org/wiki/Matrix_multiplication

    Matrix multiplication shares some properties with usual multiplication. However, matrix multiplication is not defined if the number of columns of the first factor differs from the number of rows of the second factor, and it is non-commutative , [ 10 ] even when the product remains defined after changing the order of the factors.

  8. Algebra of sets - Wikipedia

    en.wikipedia.org/wiki/Algebra_of_sets

    The algebra of sets is the set-theoretic analogue of the algebra of numbers. Just as arithmetic addition and multiplication are associative and commutative, so are set union and intersection; just as the arithmetic relation "less than or equal" is reflexive, antisymmetric and transitive, so is the set relation of "subset".

  9. Algebra over a field - Wikipedia

    en.wikipedia.org/wiki/Algebra_over_a_field

    In mathematics, an algebra over a field (often simply called an algebra) is a vector space equipped with a bilinear product.Thus, an algebra is an algebraic structure consisting of a set together with operations of multiplication and addition and scalar multiplication by elements of a field and satisfying the axioms implied by "vector space" and "bilinear".