Ad
related to: sorting algorithms for beginners
Search results
Results From The WOW.Com Content Network
A kind of opposite of a sorting algorithm is a shuffling algorithm. These are fundamentally different because they require a source of random numbers. Shuffling can also be implemented by a sorting algorithm, namely by a random sort: assigning a random number to each element of the list and then sorting based on the random numbers.
Such a component or property is called a sort key. For example, the items are books, the sort key is the title, subject or author, and the order is alphabetical. A new sort key can be created from two or more sort keys by lexicographical order. The first is then called the primary sort key, the second the secondary sort key, etc.
In computer science, integer sorting is the algorithmic problem of sorting a collection of data values by integer keys. Algorithms designed for integer sorting may also often be applied to sorting problems in which the keys are floating point numbers, rational numbers, or text strings. [1]
An algorithm is fundamentally a set of rules or defined procedures that is typically designed and used to solve a specific problem or a broad set of problems.. Broadly, algorithms define process(es), sets of rules, or methodologies that are to be followed in calculations, data processing, data mining, pattern recognition, automated reasoning or other problem-solving operations.
In computer science, selection sort is an in-place comparison sorting algorithm. It has a O ( n 2 ) time complexity , which makes it inefficient on large lists, and generally performs worse than the similar insertion sort .
Comb sort is a relatively simple sorting algorithm originally designed by Włodzimierz Dobosiewicz and Artur Borowy in 1980, [1] [2] later rediscovered (and given the name "Combsort") by Stephen Lacey and Richard Box in 1991. [3]
However, insertion sort is one of the fastest algorithms for sorting very small arrays, even faster than quicksort; indeed, good quicksort implementations use insertion sort for arrays smaller than a certain threshold, also when arising as subproblems; the exact threshold must be determined experimentally and depends on the machine, but is ...
العربية; বাংলা; Čeština; Dansk; الدارجة; Deutsch; Eesti; Ελληνικά; Español; Esperanto; فارسی; Français; 한국어; Հայերեն