When.com Web Search

  1. Ad

    related to: negative square root function graph look like physics equation calculator

Search results

  1. Results From The WOW.Com Content Network
  2. Imaginary unit - Wikipedia

    en.wikipedia.org/wiki/Imaginary_unit

    Square roots of negative numbers are called imaginary because in early-modern mathematics, only what are now called real numbers, obtainable by physical measurements or basic arithmetic, were considered to be numbers at all – even negative numbers were treated with skepticism – so the square root of a negative number was previously considered undefined or nonsensical.

  3. List of mathematical functions - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_functions

    Quadratic function: Second degree polynomial, graph is a parabola. Cubic function: Third degree polynomial. Quartic function: Fourth degree polynomial. Quintic function: Fifth degree polynomial. Rational functions: A ratio of two polynomials. nth root. Square root: Yields a number whose square is the given one. Cube root: Yields a number whose ...

  4. Functional square root - Wikipedia

    en.wikipedia.org/wiki/Functional_square_root

    Notations expressing that f is a functional square root of g are f = g [1/2] and f = g 1/2 [citation needed] [dubious – discuss], or rather f = g 1/2 (see Iterated function#Fractional_iterates_and_flows,_and_negative_iterates), although this leaves the usual ambiguity with taking the function to that power in the multiplicative sense, just as f ² = f ∘ f can be misinterpreted as x ↦ f(x)².

  5. Square root - Wikipedia

    en.wikipedia.org/wiki/Square_root

    The square root of a positive integer is the product of the roots of its prime factors, because the square root of a product is the product of the square roots of the factors. Since p 2 k = p k , {\textstyle {\sqrt {p^{2k}}}=p^{k},} only roots of those primes having an odd power in the factorization are necessary.

  6. Tetration - Wikipedia

    en.wikipedia.org/wiki/Tetration

    The function also illustrates the reflective nature of the root and logarithm functions as the equation below only holds true when = (): x y = log y ⁡ x {\displaystyle {\sqrt[{y}]{x}}=\log _{y}x} Like square roots , the square super-root of x may not have a single solution.

  7. Feynman diagram - Wikipedia

    en.wikipedia.org/wiki/Feynman_diagram

    The graphs determine the local equations of motion, while the allowed large-scale configurations describe non-perturbative physics. But because Feynman propagators are nonlocal in time, translating a field process to a coherent particle language is not completely intuitive, and has only been explicitly worked out in certain special cases.

  8. Radical symbol - Wikipedia

    en.wikipedia.org/wiki/Radical_symbol

    The radical symbol refers to the principal value of the square root function called the principal square root, which is the positive one. The two square roots of a negative number are both imaginary numbers , and the square root symbol refers to the principal square root, the one with a positive imaginary part.

  9. Methods of computing square roots - Wikipedia

    en.wikipedia.org/wiki/Methods_of_computing...

    A method analogous to piece-wise linear approximation but using only arithmetic instead of algebraic equations, uses the multiplication tables in reverse: the square root of a number between 1 and 100 is between 1 and 10, so if we know 25 is a perfect square (5 × 5), and 36 is a perfect square (6 × 6), then the square root of a number greater than or equal to 25 but less than 36, begins with ...