When.com Web Search

  1. Ad

    related to: solving polynomial equations practice quizlet with answers key 5th

Search results

  1. Results From The WOW.Com Content Network
  2. Completing the square - Wikipedia

    en.wikipedia.org/wiki/Completing_the_square

    Completing the cube is a similar technique that allows to transform a cubic polynomial into a cubic polynomial without term of degree two. More precisely, if + + + is a polynomial in x such that , its two first terms are the two first terms of the expanded form of

  3. Quintic function - Wikipedia

    en.wikipedia.org/wiki/Quintic_function

    Finding the roots (zeros) of a given polynomial has been a prominent mathematical problem.. Solving linear, quadratic, cubic and quartic equations in terms of radicals and elementary arithmetic operations on the coefficients can always be done, no matter whether the roots are rational or irrational, real or complex; there are formulas that yield the required solutions.

  4. Polynomial - Wikipedia

    en.wikipedia.org/wiki/Polynomial

    The most efficient algorithms allow solving easily (on a computer) polynomial equations of degree higher than 1,000 (see Root-finding algorithm). For polynomials with more than one indeterminate, the combinations of values for the variables for which the polynomial function takes the value zero are generally called zeros instead of "roots".

  5. Durand–Kerner method - Wikipedia

    en.wikipedia.org/wiki/Durand–Kerner_method

    In numerical analysis, the Weierstrass method or Durand–Kerner method, discovered by Karl Weierstrass in 1891 and rediscovered independently by Durand in 1960 and Kerner in 1966, is a root-finding algorithm for solving polynomial equations. [1] In other words, the method can be used to solve numerically the equation f(x) = 0,

  6. Solution in radicals - Wikipedia

    en.wikipedia.org/wiki/Solution_in_radicals

    A solution in radicals or algebraic solution is an expression of a solution of a polynomial equation that is algebraic, that is, relies only on addition, subtraction, multiplication, division, raising to integer powers, and extraction of n th roots (square roots, cube roots, etc.). A well-known example is the quadratic formula

  7. Polynomial transformation - Wikipedia

    en.wikipedia.org/wiki/Polynomial_transformation

    Polynomial transformations have been applied to the simplification of polynomial equations for solution, where possible, by radicals. Descartes introduced the transformation of a polynomial of degree d which eliminates the term of degree d − 1 by a translation of the roots. Such a polynomial is termed depressed. This already suffices to solve ...

  8. System of polynomial equations - Wikipedia

    en.wikipedia.org/wiki/System_of_polynomial_equations

    Thus solving a polynomial system over a number field is reduced to solving another system over the rational numbers. For example, if a system contains 2 {\displaystyle {\sqrt {2}}} , a system over the rational numbers is obtained by adding the equation r 2 2 – 2 = 0 and replacing 2 {\displaystyle {\sqrt {2}}} by r 2 in the other equations.

  9. Thomae's formula - Wikipedia

    en.wikipedia.org/wiki/Thomae's_formula

    Something more general is required for equations of higher degree, so to solve the quintic, Hermite, et al. replaced the exponential by an elliptic modular function and the integral (logarithm) by an elliptic integral. Kronecker believed that this was a special case of a still more general method. [1]