Search results
Results From The WOW.Com Content Network
Consecutive interior angles are the two pairs of angles that: [4] [2] have distinct vertex points, lie on the same side of the transversal and; are both interior. Two lines are parallel if and only if the two angles of any pair of consecutive interior angles of any transversal are supplementary (sum to 180°).
The interior angle concept can be extended in a consistent way to crossed polygons such as star polygons by using the concept of directed angles.In general, the interior angle sum in degrees of any closed polygon, including crossed (self-intersecting) ones, is then given by 180(n–2k)°, where n is the number of vertices, and the strictly positive integer k is the number of total (360 ...
In Euclidean geometry, the AA postulate states that two triangles are similar if they have two corresponding angles congruent. The AA postulate follows from the fact that the sum of the interior angles of a triangle is always equal to 180°. By knowing two angles, such as 32° and 64° degrees, we know that the next angle is 84°, because 180 ...
If the sum of the interior angles α and β is less than 180°, the two straight lines, produced indefinitely, meet on that side. In geometry, the parallel postulate, also called Euclid's fifth postulate because it is the fifth postulate in Euclid's Elements, is a distinctive axiom in Euclidean geometry. It states that, in two-dimensional geometry:
The corresponding angles as well as the corresponding sides are defined as appearing in the same sequence, so for example if in a polygon with the side sequence abcde and another with the corresponding side sequence vwxyz we have vertex angle a appearing between sides a and b then its corresponding vertex angle v must appear between sides v and w.
The internal angle of a simple polygon, at one of its vertices, is the angle spanned by the interior of the polygon at that vertex. A vertex is convex if its internal angle is less than (a straight angle, 180°) and concave if the internal angle is greater than .
SAS Postulate: Two sides in a triangle have the same length as two sides in the other triangle, and the included angles have the same measure. ASA: Two interior angles and the side between them in a triangle have the same measure and length, respectively, as those in the other triangle. (This is the basis of surveying by triangulation.)
[10] [11] Huffman included the result in a 1976 paper on curved creases, [12] and Husimi published the four-crease theorem in a book on origami geometry with his wife Mitsue Husimi. [13] The same result was published even earlier, in a pair of papers from 1966 by S. Murata that also included the six-crease case and the general case of Maekawa's ...