When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Sum of squares - Wikipedia

    en.wikipedia.org/wiki/Sum_of_squares

    The squared Euclidean distance between two points, equal to the sum of squares of the differences between their coordinates Heron's formula for the area of a triangle can be re-written as using the sums of squares of a triangle's sides (and the sums of the squares of squares)

  3. Coefficient of determination - Wikipedia

    en.wikipedia.org/wiki/Coefficient_of_determination

    Ordinary least squares regression of Okun's law.Since the regression line does not miss any of the points by very much, the R 2 of the regression is relatively high.. In statistics, the coefficient of determination, denoted R 2 or r 2 and pronounced "R squared", is the proportion of the variation in the dependent variable that is predictable from the independent variable(s).

  4. Total sum of squares - Wikipedia

    en.wikipedia.org/wiki/Total_sum_of_squares

    In statistical data analysis the total sum of squares (TSS or SST) is a quantity that appears as part of a standard way of presenting results of such analyses. For a set of observations, y i , i ≤ n {\displaystyle y_{i},i\leq n} , it is defined as the sum over all squared differences between the observations and their overall mean y ...

  5. Effect size - Wikipedia

    en.wikipedia.org/wiki/Effect_size

    In statistics, an effect size is a value measuring the strength of the relationship between two variables in a population, or a sample-based estimate of that quantity. It can refer to the value of a statistic calculated from a sample of data, the value of one parameter for a hypothetical population, or to the equation that operationalizes how statistics or parameters lead to the effect size ...

  6. Explained sum of squares - Wikipedia

    en.wikipedia.org/wiki/Explained_sum_of_squares

    The general regression model with n observations and k explanators, the first of which is a constant unit vector whose coefficient is the regression intercept, is = + where y is an n × 1 vector of dependent variable observations, each column of the n × k matrix X is a vector of observations on one of the k explanators, is a k × 1 vector of true coefficients, and e is an n × 1 vector of the ...

  7. Variance - Wikipedia

    en.wikipedia.org/wiki/Variance

    A square with sides equal to the difference of each value from the mean is formed for each value. Arranging the squares into a rectangle with one side equal to the number of values, n, results in the other side being the distribution's variance, σ 2.

  8. Standard deviation - Wikipedia

    en.wikipedia.org/wiki/Standard_deviation

    A little algebra shows that the distance between P and M (which is the same as the orthogonal distance between P and the line L) (¯) is equal to the standard deviation of the vector (x 1, x 2, x 3), multiplied by the square root of the number of dimensions of the vector (3 in this case).

  9. Pearson correlation coefficient - Wikipedia

    en.wikipedia.org/wiki/Pearson_correlation...

    Pearson's correlation coefficient is the covariance of the two variables divided by the product of their standard deviations. The form of the definition involves a "product moment", that is, the mean (the first moment about the origin) of the product of the mean-adjusted random variables; hence the modifier product-moment in the name.