When.com Web Search

  1. Ads

    related to: rocket formula calculations chemistry answer line up sheet

Search results

  1. Results From The WOW.Com Content Network
  2. Tsiolkovsky rocket equation - Wikipedia

    en.wikipedia.org/wiki/Tsiolkovsky_rocket_equation

    A rocket's required mass ratio as a function of effective exhaust velocity ratio. The classical rocket equation, or ideal rocket equation is a mathematical equation that describes the motion of vehicles that follow the basic principle of a rocket: a device that can apply acceleration to itself using thrust by expelling part of its mass with high velocity and can thereby move due to the ...

  3. Rocket propellant - Wikipedia

    en.wikipedia.org/wiki/Rocket_propellant

    This relationship is described by the rocket equation. Exhaust velocity is dependent on the propellant and engine used and closely related to specific impulse, the total energy delivered to the rocket vehicle per unit of propellant mass consumed. Mass ratio can also be affected by the choice of a given propellant.

  4. Delta-v budget - Wikipedia

    en.wikipedia.org/wiki/Delta-v_budget

    The Tsiolkovsky rocket equation shows that the delta-v of a rocket (stage) is proportional to the logarithm of the fuelled-to-empty mass ratio of the vehicle, and to the specific impulse of the rocket engine. A key goal in designing space-mission trajectories is to minimize the required delta-v to reduce the size and expense of the rocket that ...

  5. Mass ratio - Wikipedia

    en.wikipedia.org/wiki/Mass_ratio

    This equation can be rewritten in the following equivalent form: = / The fraction on the left-hand side of this equation is the rocket's mass ratio by definition. This equation indicates that a Δv of n {\displaystyle n} times the exhaust velocity requires a mass ratio of e n {\displaystyle e^{n}} .

  6. Variable-mass system - Wikipedia

    en.wikipedia.org/wiki/Variable-mass_system

    There are different derivations for the variable-mass system motion equation, depending on whether the mass is entering or leaving a body (in other words, whether the moving body's mass is increasing or decreasing, respectively). To simplify calculations, all bodies are considered as particles. It is also assumed that the mass is unable to ...

  7. Hybrid rocket fuel regression - Wikipedia

    en.wikipedia.org/wiki/Hybrid_Rocket_Fuel_Regression

    Hybrid rocket fuel regression refers to the process by which the fuel grain of a hybrid-propellant rocket is converted from a solid to a gas that is combusted. It encompasses the regression rate, the distance that the fuel surface recedes over a given time, as well as the burn area, the surface area that is being eroded at a given moment.

  8. Specific impulse - Wikipedia

    en.wikipedia.org/wiki/Specific_impulse

    The specific impulse of a rocket can be defined in terms of thrust per unit mass flow of propellant. This is an equally valid (and in some ways somewhat simpler) way of defining the effectiveness of a rocket propellant. For a rocket, the specific impulse defined in this way is simply the effective exhaust velocity relative to the rocket, v e ...

  9. Propellant mass fraction - Wikipedia

    en.wikipedia.org/wiki/Propellant_mass_fraction

    In rockets for a given target orbit, a rocket's mass fraction is the portion of the rocket's pre-launch mass (fully fueled) that does not reach orbit.The propellant mass fraction is the ratio of just the propellant to the entire mass of the vehicle at takeoff (propellant plus dry mass).