When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Pendulum (mechanics) - Wikipedia

    en.wikipedia.org/wiki/Pendulum_(mechanics)

    An important concept is the equivalent length, , the length of a simple pendulums that has the same angular frequency as the compound pendulum: =:= = Consider the following cases: The simple pendulum is the special case where all the mass is located at the bob swinging at a distance ℓ {\displaystyle \ell } from the pivot.

  3. Pendulum - Wikipedia

    en.wikipedia.org/wiki/Pendulum

    The presence of the acceleration of gravity g in the periodicity equation (1) for a pendulum means that the local gravitational acceleration of the Earth can be calculated from the period of a pendulum. A pendulum can therefore be used as a gravimeter to measure the local gravity, which varies by over 0.5% across the surface of the Earth. [107]

  4. Mechanical resonance - Wikipedia

    en.wikipedia.org/wiki/Mechanical_resonance

    The resonance frequency of a pendulum, the only frequency at which it will vibrate, is given approximately, for small displacements, by the equation: [1] f = 1 2 π g L {\displaystyle f={1 \over 2\pi }{\sqrt {g \over L}}}

  5. Seconds pendulum - Wikipedia

    en.wikipedia.org/wiki/Seconds_pendulum

    A seconds pendulum is a pendulum whose period is precisely two seconds; one second for a swing in one direction and one second for the return swing, a frequency of 0.5 Hz. [ 1 ] Principles

  6. Harmonic oscillator - Wikipedia

    en.wikipedia.org/wiki/Harmonic_oscillator

    The period and frequency are determined by the size of the mass m and the force constant k, while the amplitude and phase are determined by the starting position and velocity. The velocity and acceleration of a simple harmonic oscillator oscillate with the same frequency as the position, but with shifted phases. The velocity is maximal for zero ...

  7. Rayleigh–Lorentz pendulum - Wikipedia

    en.wikipedia.org/wiki/Rayleigh–Lorentz_pendulum

    Rayleigh–Lorentz pendulum (or Lorentz pendulum) is a simple pendulum, but subjected to a slowly varying frequency due to an external action (frequency is varied by varying the pendulum length), named after Lord Rayleigh and Hendrik Lorentz. [1] This problem formed the basis for the concept of adiabatic invariants in mechanics. On account of ...

  8. Q factor - Wikipedia

    en.wikipedia.org/wiki/Q_factor

    A second-order Butterworth filter (i.e., continuous-time filter with the flattest passband frequency response) has an underdamped Q = ⁠ 1 / √ 2 ⁠. [11] A pendulum's Q-factor is: Q = Mω/Γ, where M is the mass of the bob, ω = 2π/T is the pendulum's radian frequency of oscillation, and Γ is the frictional damping force on the pendulum ...

  9. Foucault pendulum - Wikipedia

    en.wikipedia.org/wiki/Foucault_pendulum

    The Foucault pendulum or Foucault's pendulum is a simple device named after French physicist Léon Foucault, conceived as an experiment to demonstrate the Earth's rotation. If a long and heavy pendulum suspended from the high roof above a circular area is monitored over an extended period of time, its plane of oscillation appears to change ...