When.com Web Search

  1. Ad

    related to: finding domain algebraically

Search results

  1. Results From The WOW.Com Content Network
  2. Domain of a function - Wikipedia

    en.wikipedia.org/wiki/Domain_of_a_function

    The term domain is also commonly used in a different sense in mathematical analysis: a domain is a non-empty connected open set in a topological space. In particular, in real and complex analysis , a domain is a non-empty connected open subset of the real coordinate space R n {\displaystyle \mathbb {R} ^{n}} or the complex coordinate space C n ...

  3. Domain (mathematical analysis) - Wikipedia

    en.wikipedia.org/wiki/Domain_(mathematical_analysis)

    In complex analysis, a complex domain (or simply domain) is any connected open subset of the complex plane C. For example, the entire complex plane is a domain, as is the open unit disk, the open upper half-plane, and so forth. Often, a complex domain serves as the domain of definition for a holomorphic function.

  4. Domain (ring theory) - Wikipedia

    en.wikipedia.org/wiki/Domain_(ring_theory)

    In algebra, a domain is a nonzero ring in which ab = 0 implies a = 0 or b = 0. [1] (Sometimes such a ring is said to "have the zero-product property".) Equivalently, a domain is a ring in which 0 is the only left zero divisor (or equivalently, the only right zero divisor). A commutative domain is called an integral domain.

  5. Range of a function - Wikipedia

    en.wikipedia.org/wiki/Range_of_a_function

    with domain, the range of , sometimes denoted ⁡ or ⁡ (), [4] may refer to the codomain or target set (i.e., the set into which all of the output of is constrained to fall), or to (), the image of the domain of under (i.e., the subset of consisting of all actual outputs of ). The image of a function is always a subset of the codomain of the ...

  6. Unique factorization domain - Wikipedia

    en.wikipedia.org/wiki/Unique_factorization_domain

    A Noetherian integral domain is a UFD if and only if every height 1 prime ideal is principal (a proof is given at the end). Also, a Dedekind domain is a UFD if and only if its ideal class group is trivial. In this case, it is in fact a principal ideal domain. In general, for an integral domain A, the following conditions are equivalent: A is a UFD.

  7. Integral domain - Wikipedia

    en.wikipedia.org/wiki/Integral_domain

    The converse is clear: an integral domain has no nonzero nilpotent elements, and the zero ideal is the unique minimal prime ideal. This translates, in algebraic geometry, into the fact that the coordinate ring of an affine algebraic set is an integral domain if and only if the algebraic set is an algebraic variety.

  8. Euclidean domain - Wikipedia

    en.wikipedia.org/wiki/Euclidean_domain

    A Euclidean domain is an integral domain which can be endowed with at least one Euclidean function. A particular Euclidean function f is not part of the definition of a Euclidean domain, as, in general, a Euclidean domain may admit many different Euclidean functions.

  9. Graph of a function - Wikipedia

    en.wikipedia.org/wiki/Graph_of_a_function

    Given a function: from a set X (the domain) to a set Y (the codomain), the graph of the function is the set [4] = {(, ()):}, which is a subset of the Cartesian product.In the definition of a function in terms of set theory, it is common to identify a function with its graph, although, formally, a function is formed by the triple consisting of its domain, its codomain and its graph.