Ads
related to: free domain and range worksheets- Printable Workbooks
Download & print 300+ workbooks
written & reviewed by teachers.
- Math Worksheets
Addition, subtraction, division,
multiplication, fractions, & more.
- Lesson Plans
Engage your students with our
detailed lesson plans for K-8.
- Science Worksheets
Erosion, animals, the solar system,
plants, states of matter, & more.
- ELA Worksheets
Punctuation, reading comprehension,
grammar, sight words, & more.
- Social Studies Worksheets
States & capitals, communities,
world history, holidays, & more.
- Printable Workbooks
generationgenius.com has been visited by 10K+ users in the past month
Search results
Results From The WOW.Com Content Network
The term domain is also commonly used in a different sense in mathematical analysis: a domain is a non-empty connected open set in a topological space. In particular, in real and complex analysis , a domain is a non-empty connected open subset of the real coordinate space R n {\displaystyle \mathbb {R} ^{n}} or the complex coordinate space C n ...
is a function from domain X to codomain Y. The yellow oval inside Y is the image of . Sometimes "range" refers to the image and sometimes to the codomain. In mathematics, the range of a function may refer to either of two closely related concepts: the codomain of the function, or; the image of the function.
More generally, evaluating at each element of a given subset of its domain produces a set, called the "image of under (or through) ". Similarly, the inverse image (or preimage ) of a given subset B {\displaystyle B} of the codomain Y {\displaystyle Y} is the set of all elements of X {\displaystyle X} that map to a member of B . {\displaystyle B.}
A codomain is part of a function f if f is defined as a triple (X, Y, G) where X is called the domain of f, Y its codomain, and G its graph. [1] The set of all elements of the form f(x), where x ranges over the elements of the domain X, is called the image of f. The image of a function is a subset of its codomain so it might not coincide with it.
These properties concern the domain, the codomain and the image of functions. Injective function: has a distinct value for each distinct input. Also called an injection or, sometimes, one-to-one function. In other words, every element of the function's codomain is the image of at most one element of its domain.
This expression evaluates to false if the domain of and is the real numbers, but true if the domain is the complex numbers. The term "dummy variable" is also sometimes used for a bound variable (more commonly in general mathematics than in computer science), but this should not be confused with the identically named but unrelated concept of ...