Search results
Results From The WOW.Com Content Network
In mathematics, parity is the property of an integer of whether it is even or odd. An integer is even if it is divisible by 2, and odd if it is not. [1] For example, −4, 0, and 82 are even numbers, while −3, 5, 7, and 21 are odd numbers.
Even and odd numbers: An integer is even if it is a multiple of 2, and is odd otherwise. Prime number: A positive integer with exactly two positive divisors: itself and 1. The primes form an infinite sequence 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, ...
Perfect numbers are natural numbers that equal the sum of their positive proper divisors, which are divisors excluding the number itself. So, 6 is a perfect number because the proper divisors of 6 are 1, 2 , and 3 , and 1 + 2 + 3 = 6 .
For if every even number greater than 4 is the sum of two odd primes, adding 3 to each even number greater than 4 will produce the odd numbers greater than 7 (and 7 itself is equal to 2+2+3). In 2013, Harald Helfgott released a proof of Goldbach's weak conjecture. [ 2 ]
The full statement of Vinogradov's theorem gives asymptotic bounds on the number of representations of an odd integer as a sum of three primes. The notion of "sufficiently large" was ill-defined in Vinogradov's original work, but in 2002 it was shown that 10 1346 is sufficiently large.
This page was last edited on 28 September 2007, at 23:06 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may apply.
A natural number is divisible by three if the sum of its digits in base 10 is divisible by 3. For example, the number 21 is divisible by three (3 times 7) and the sum of its digits is 2 + 1 = 3. Because of this, the reverse of any number that is divisible by three (or indeed, any permutation of its digits) is also divisible by three. For ...
Infinitely many weird numbers exist. [3] For example, 70p is weird for all primes p ≥ 149. In fact, the set of weird numbers has positive asymptotic density. [4] It is not known if any odd weird numbers exist. If so, they must be greater than 10 21. [5] Sidney Kravitz has shown that for k a positive integer, Q a prime exceeding 2 k, and