When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Hyperbola - Wikipedia

    en.wikipedia.org/wiki/Hyperbola

    Hyperbola (red): features. In mathematics, a hyperbola is a type of smooth curve lying in a plane, defined by its geometric properties or by equations for which it is the solution set. A hyperbola has two pieces, called connected components or branches, that are mirror images of each other and resemble two infinite bows.

  3. Hyperbolic angle - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_angle

    In mathematics, hyperbolic angle is an invariant measure as it is preserved under hyperbolic rotation. The hyperbola xy = 1 is rectangular with semi-major axis 2 {\displaystyle {\sqrt {2}}} , analogous to the circular angle equaling the area of a circular sector in a circle with radius 2 {\displaystyle {\sqrt {2}}} .

  4. Hyperbolic geometry - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_geometry

    Hyperbolic geometry is generally introduced in terms of the geodesics and their intersections on the hyperbolic plane. [34] Once we choose a coordinate chart (one of the "models"), we can always embed it in a Euclidean space of same dimension, but the embedding is clearly not isometric (since the curvature of Euclidean space is 0). The ...

  5. Hyperbolic - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic

    of or pertaining to a hyperbola, a type of smooth curve lying in a plane in mathematics Hyperbolic geometry, a non-Euclidean geometry; Hyperbolic functions, analogues of ordinary trigonometric functions, defined using the hyperbola; of or pertaining to hyperbole, the use of exaggeration as a rhetorical device or figure of speech

  6. Hyperbolic coordinates - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_coordinates

    Euler’s work made the natural logarithm a standard mathematical tool, and elevated mathematics to the realm of transcendental functions. The hyperbolic coordinates are formed on the original picture of G. de Saint-Vincent, which provided the quadrature of the hyperbola, and transcended the limits of algebraic functions.

  7. Eccentricity (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Eccentricity_(mathematics)

    A family of conic sections of varying eccentricity share a focus point and directrix line, including an ellipse (red, e = 1/2), a parabola (green, e = 1), and a hyperbola (blue, e = 2). The conic of eccentricity 0 in this figure is an infinitesimal circle centered at the focus, and the conic of eccentricity ∞ is an infinitesimally separated ...

  8. Hyperbolic functions - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_functions

    Circle and hyperbola tangent at (1,1) display geometry of circular functions in terms of circular sector area u and hyperbolic functions depending on hyperbolic sector area u. The hyperbolic functions represent an expansion of trigonometry beyond the circular functions. Both types depend on an argument, either circular angle or hyperbolic angle.

  9. Feuerbach hyperbola - Wikipedia

    en.wikipedia.org/wiki/Feuerbach_hyperbola

    Feuerbach Hyperbola. In geometry, the Feuerbach hyperbola is a rectangular hyperbola passing through important triangle centers such as the Orthocenter, Gergonne point, Nagel point and Schiffler point. The center of the hyperbola is the Feuerbach point, the point of tangency of the incircle and the nine-point circle. [1]