When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Matrix multiplication - Wikipedia

    en.wikipedia.org/wiki/Matrix_multiplication

    For matrix multiplication, the number of columns in the first matrix must be equal to the number of rows in the second matrix. ... A coordinate vector is commonly ...

  3. Rotation matrix - Wikipedia

    en.wikipedia.org/wiki/Rotation_matrix

    Since matrix multiplication has no effect on the zero vector (the coordinates of the origin), rotation matrices describe rotations about the origin. Rotation matrices provide an algebraic description of such rotations, and are used extensively for computations in geometry , physics , and computer graphics .

  4. Matrix (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Matrix_(mathematics)

    It is called an identity matrix because multiplication with it leaves a matrix unchanged: = = for any m-by-n matrix A. A nonzero scalar multiple of an identity matrix is called a scalar matrix. If the matrix entries come from a field, the scalar matrices form a group, under matrix multiplication, that is isomorphic to the multiplicative group ...

  5. Row and column vectors - Wikipedia

    en.wikipedia.org/wiki/Row_and_column_vectors

    Matrix multiplication involves the action of multiplying each row vector of one matrix by each column vector of another matrix.. The dot product of two column vectors a, b, considered as elements of a coordinate space, is equal to the matrix product of the transpose of a with b,

  6. Transformation matrix - Wikipedia

    en.wikipedia.org/wiki/Transformation_matrix

    With respect to an n-dimensional matrix, an n+1-dimensional matrix can be described as an augmented matrix. In the physical sciences , an active transformation is one which actually changes the physical position of a system , and makes sense even in the absence of a coordinate system whereas a passive transformation is a change in the ...

  7. Vectorization (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Vectorization_(mathematics)

    The vectorization is frequently used together with the Kronecker product to express matrix multiplication as a linear transformation on matrices. In particular, vec ⁡ ( A B C ) = ( C T ⊗ A ) vec ⁡ ( B ) {\displaystyle \operatorname {vec} (ABC)=(C^{\mathrm {T} }\otimes A)\operatorname {vec} (B)} for matrices A , B , and C of dimensions k ...

  8. Matrix multiplication algorithm - Wikipedia

    en.wikipedia.org/wiki/Matrix_multiplication...

    The definition of matrix multiplication is that if C = AB for an n × m matrix A and an m × p matrix B, then C is an n × p matrix with entries = =. From this, a simple algorithm can be constructed which loops over the indices i from 1 through n and j from 1 through p, computing the above using a nested loop:

  9. Homogeneous coordinates - Wikipedia

    en.wikipedia.org/wiki/Homogeneous_coordinates

    In homogeneous coordinates, the point (,,) is represented by (,,,) and the point it maps to on the plane is represented by (,,), so projection can be represented in matrix form as Matrices representing other geometric transformations can be combined with this and each other by matrix multiplication. As a result, any perspective projection of ...