Search results
Results From The WOW.Com Content Network
In mathematics, summation is the addition of a sequence of numbers, called addends or summands; the result is their sum or total.Beside numbers, other types of values can be summed as well: functions, vectors, matrices, polynomials and, in general, elements of any type of mathematical objects on which an operation denoted "+" is defined.
Mathematical notation uses a symbol that compactly represents summation of many similar terms: the summation symbol, , an enlarged form of the upright capital Greek letter sigma. This is defined as = a i = a m + a m + 1 + a m + 2 + ... + a n - 1 + a n
Functional notation: if the first is the name (symbol) of a function, denotes the value of the function applied to the expression between the parentheses; for example, (), (+). In the case of a multivariate function , the parentheses contain several expressions separated by commas, such as f ( x , y ) {\displaystyle f(x,y)} .
In this manner, function definition expressions of the kind shown above can be thought of as the variable binding operator, analogous to the lambda expressions of lambda calculus. Other binding operators, like the summation sign, can be thought of as higher-order functions applying to a function. So, for example, the expression
Download as PDF; Printable version; ... move to sidebar hide. Summation notation may refer to: Capital-sigma notation, mathematical symbol for ...
Summation#Capital-sigma notation To a section : This is a redirect from a topic that does not have its own page to a section of a page on the subject. For redirects to embedded anchors on a page, use {{ R to anchor }} instead .
Mathematical notation is widely used in science and engineering for representing complex concepts and properties in a concise, unambiguous, and accurate way. This notation consists of symbols used for representing operations, unspecified numbers, relations and any other mathematical objects, and then assembling them into expressions and ...
In mathematical analysis and in probability theory, a σ-algebra ("sigma algebra"; also σ-field, where the σ comes from the German "Summe" [1]) on a set X is a nonempty collection Σ of subsets of X closed under complement, countable unions, and countable intersections. The ordered pair (,) is called a measurable space.