Search results
Results From The WOW.Com Content Network
In numerical analysis, Bairstow's method is an efficient algorithm for finding the roots of a real polynomial of arbitrary degree. The algorithm first appeared in the appendix of the 1920 book Applied Aerodynamics by Leonard Bairstow. [1] [non-primary source needed] The algorithm finds the roots in complex conjugate pairs using only real ...
Laguerre's method may even converge to a complex root of the polynomial, because the radicand of the square root may be of a negative number, in the formula for the correction, , given above – manageable so long as complex numbers can be conveniently accommodated for the calculation. This may be considered an advantage or a liability ...
To deduce the numeric values of the solutions from a RUR seems easy: it suffices to compute the roots of the univariate polynomial and to substitute them in the other equations. This is not so easy because the evaluation of a polynomial at the roots of another polynomial is highly unstable.
In mathematics, the complex conjugate root theorem states that if P is a polynomial in one variable with real coefficients, and a + bi is a root of P with a and b real numbers, then its complex conjugate a − bi is also a root of P. [1]
Many root-finding processes work by interpolation. This consists in using the last computed approximate values of the root for approximating the function by a polynomial of low degree, which takes the same values at these approximate roots. Then the root of the polynomial is computed and used as a new approximate value of the root of the ...
For polynomials with real or complex coefficients, it is not possible to express a lower bound of the root separation in terms of the degree and the absolute values of the coefficients only, because a small change on a single coefficient transforms a polynomial with multiple roots into a square-free polynomial with a small root separation, and ...
In the case of two nested square roots, the following theorem completely solves the problem of denesting. [2]If a and c are rational numbers and c is not the square of a rational number, there are two rational numbers x and y such that + = if and only if is the square of a rational number d.
Using this deflation guarantees that each root is computed only once and that all roots are found. The real variant follows the same pattern, but computes two roots at a time, either two real roots or a pair of conjugate complex roots. By avoiding complex arithmetic, the real variant can be faster (by a factor of 4) than the complex variant.