When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Asymptote - Wikipedia

    en.wikipedia.org/wiki/Asymptote

    If x=a is a vertical asymptote of f(x), then x=a+h is a vertical asymptote of f(x-h) If y=c is a horizontal asymptote of f(x), then y=c+k is a horizontal asymptote of f(x)+k; If a known function has an asymptote, then the scaling of the function also have an asymptote. If y=ax+b is an asymptote of f(x), then y=cax+cb is an asymptote of cf(x)

  3. Trigonometric functions - Wikipedia

    en.wikipedia.org/wiki/Trigonometric_functions

    The tangent function ⁡ = ⁡ / ⁡ has a simple zero at = and vertical asymptotes at = /, where it has a simple pole of residue . Again, owing to the periodicity, the zeros are all the integer multiples of π {\displaystyle \pi } and the poles are odd multiples of π / 2 {\displaystyle \pi /2} , all having the same residue.

  4. Vertical tangent - Wikipedia

    en.wikipedia.org/wiki/Vertical_tangent

    Vertical tangent on the function ƒ(x) at x = c. In mathematics, particularly calculus, a vertical tangent is a tangent line that is vertical. Because a vertical line has infinite slope, a function whose graph has a vertical tangent is not differentiable at the point of tangency.

  5. Folium of Descartes - Wikipedia

    en.wikipedia.org/wiki/Folium_of_Descartes

    The curve was first proposed and studied by René Descartes in 1638. [1] Its claim to fame lies in an incident in the development of calculus.Descartes challenged Pierre de Fermat to find the tangent line to the curve at an arbitrary point since Fermat had recently discovered a method for finding tangent lines.

  6. Truncus (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Truncus_(mathematics)

    The asymptotes of a truncus are found at x = -b (for the vertical asymptote) and y = c (for the horizontal asymptote). This function is more commonly known as a reciprocal squared function, particularly the basic example 1 / x 2 {\displaystyle 1/x^{2}} .

  7. Inflection point - Wikipedia

    en.wikipedia.org/wiki/Inflection_point

    For the graph of a function f of differentiability class C 2 (its first derivative f', and its second derivative f'', exist and are continuous), the condition f'' = 0 can also be used to find an inflection point since a point of f'' = 0 must be passed to change f'' from a positive value (concave upward) to a negative value (concave downward) or ...

  8. Singularity (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Singularity_(mathematics)

    In other words, the function has an infinite discontinuity when its graph has a vertical asymptote. An essential singularity is a term borrowed from complex analysis (see below). This is the case when either one or the other limits f ( c − ) {\displaystyle f(c^{-})} or f ( c + ) {\displaystyle f(c^{+})} does not exist, but not because it is ...

  9. Proofs of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/Proofs_of_trigonometric...

    Illustration of the sum formula. Draw a horizontal line (the x -axis); mark an origin O. Draw a line from O at an angle α {\displaystyle \alpha } above the horizontal line and a second line at an angle β {\displaystyle \beta } above that; the angle between the second line and the x -axis is α + β {\displaystyle \alpha +\beta } .