Ads
related to: three dimensional rectangle name badges
Search results
Results From The WOW.Com Content Network
Tessellations of euclidean and hyperbolic space may also be considered regular polytopes. Note that an 'n'-dimensional polytope actually tessellates a space of one dimension less. For example, the (three-dimensional) platonic solids tessellate the 'two'-dimensional 'surface' of the sphere.
Regular polyhedron. Platonic solid: . Tetrahedron, Cube, Octahedron, Dodecahedron, Icosahedron; Regular spherical polyhedron. Dihedron, Hosohedron; Kepler–Poinsot ...
Another type of sphere arises from a 4-ball, whose three-dimensional surface is the 3-sphere: points equidistant to the origin of the euclidean space R 4. If a point has coordinates, P ( x , y , z , w ) , then x 2 + y 2 + z 2 + w 2 = 1 characterizes those points on the unit 3-sphere centered at the origin.
A rhombohedron (also called a rhombic hexahedron) is a three-dimensional figure like a cuboid (also called a rectangular parallelepiped), except that its 3 pairs of parallel faces are up to 3 types of rhombi instead of rectangles. The rhombic dodecahedron is a convex polyhedron with 12 congruent rhombi as its faces.
A three-dimensional rectangular wire frame that is twisted can take the shape of a bow tie. The interior of a crossed rectangle can have a polygon density of ±1 in each triangle, dependent upon the winding orientation as clockwise or counterclockwise. A crossed rectangle may be considered equiangular if right and left
A four-dimensional orthotope is likely a hypercuboid. [7]The special case of an n-dimensional orthotope where all edges have equal length is the n-cube or hypercube. [2]By analogy, the term "hyperrectangle" can refer to Cartesian products of orthogonal intervals of other kinds, such as ranges of keys in database theory or ranges of integers, rather than real numbers.