Ads
related to: cross correlation functions in excel
Search results
Results From The WOW.Com Content Network
In time series analysis and statistics, the cross-correlation of a pair of random process is the correlation between values of the processes at different times, as a function of the two times. Let ( X t , Y t ) {\displaystyle (X_{t},Y_{t})} be a pair of random processes, and t {\displaystyle t} be any point in time ( t {\displaystyle t} may be ...
A correlation function is a function that gives the statistical correlation between random variables, contingent on the spatial or temporal distance between those variables. [1] If one considers the correlation function between random variables representing the same quantity measured at two different points, then this is often referred to as an ...
In the analysis of data, a correlogram is a chart of correlation statistics. For example, in time series analysis, a plot of the sample autocorrelations versus (the time lags) is an autocorrelogram. If cross-correlation is plotted, the result is called a cross-correlogram.
Some features of convolution are similar to cross-correlation: for real-valued functions, of a continuous or discrete variable, convolution () differs from cross-correlation only in that either () or () is reflected about the y-axis in convolution; thus it is a cross-correlation of () and (), or () and ().
One common correlation function is the radial distribution function which is seen often in statistical mechanics and fluid mechanics. The correlation function can be calculated in exactly solvable models (one-dimensional Bose gas, spin chains, Hubbard model) by means of Quantum inverse scattering method and Bethe ansatz. In an isotropic XY ...
It is common practice in some disciplines (e.g. statistics and time series analysis) to normalize the autocovariance function to get a time-dependent Pearson correlation coefficient. However in other disciplines (e.g. engineering) the normalization is usually dropped and the terms "autocorrelation" and "autocovariance" are used interchangeably.
With any number of random variables in excess of 1, the variables can be stacked into a random vector whose i th element is the i th random variable. Then the variances and covariances can be placed in a covariance matrix, in which the (i, j) element is the covariance between the i th random variable and the j th one.
Pearson's correlation coefficient is the covariance of the two variables divided by the product of their standard deviations. The form of the definition involves a "product moment", that is, the mean (the first moment about the origin) of the product of the mean-adjusted random variables; hence the modifier product-moment in the name.