When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Batch normalization - Wikipedia

    en.wikipedia.org/wiki/Batch_normalization

    In a neural network, batch normalization is achieved through a normalization step that fixes the means and variances of each layer's inputs. Ideally, the normalization would be conducted over the entire training set, but to use this step jointly with stochastic optimization methods, it is impractical to use the global information. Thus ...

  3. Normalization (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Normalization_(machine...

    This solves the problem of different features having vastly different scales, for example if one feature is measured in kilometers and another in nanometers. Activation normalization, on the other hand, is specific to deep learning, and includes methods that rescale the activation of hidden neurons inside neural networks.

  4. Analysis of covariance - Wikipedia

    en.wikipedia.org/wiki/Analysis_of_covariance

    Analysis of covariance (ANCOVA) is a general linear model that blends ANOVA and regression. ANCOVA evaluates whether the means of a dependent variable (DV) are equal across levels of one or more categorical independent variables (IV) and across one or more continuous variables.

  5. Stationary process - Wikipedia

    en.wikipedia.org/wiki/Stationary_process

    An example of a discrete-time stationary process where the sample space is also discrete (so that the random variable may take one of N possible values) is a Bernoulli scheme. Other examples of a discrete-time stationary process with continuous sample space include some autoregressive and moving average processes which are both subsets of the ...

  6. Step detection - Wikipedia

    en.wikipedia.org/wiki/Step_detection

    The step detection problem occurs in multiple scientific and engineering contexts, for example in statistical process control [1] (the control chart being the most directly related method), in exploration geophysics (where the problem is to segment a well-log recording into stratigraphic zones [2]), in genetics (the problem of separating ...

  7. Singular spectrum analysis - Wikipedia

    en.wikipedia.org/wiki/Singular_spectrum_analysis

    The origins of SSA and, more generally, of subspace-based methods for signal processing, go back to the eighteenth century (Prony's method).A key development was the formulation of the spectral decomposition of the covariance operator of stochastic processes by Kari Karhunen and Michel Loève in the late 1940s (Loève, 1945; Karhunen, 1947).

  8. Estimation of covariance matrices - Wikipedia

    en.wikipedia.org/wiki/Estimation_of_covariance...

    The sample covariance matrix (SCM) is an unbiased and efficient estimator of the covariance matrix if the space of covariance matrices is viewed as an extrinsic convex cone in R p×p; however, measured using the intrinsic geometry of positive-definite matrices, the SCM is a biased and inefficient estimator. [1]

  9. Covariance function - Wikipedia

    en.wikipedia.org/wiki/Covariance_function

    In probability theory and statistics, the covariance function describes how much two random variables change together (their covariance) with varying spatial or temporal separation. For a random field or stochastic process Z ( x ) on a domain D , a covariance function C ( x , y ) gives the covariance of the values of the random field at the two ...