Search results
Results From The WOW.Com Content Network
The greatest common divisor (GCD) of integers a and b, at least one of which is nonzero, is the greatest positive integer d such that d is a divisor of both a and b; that is, there are integers e and f such that a = de and b = df, and d is the largest such integer.
The natural numbers m and n must be coprime, since any common factor could be factored out of m and n to make g greater. Thus, any other number c that divides both a and b must also divide g. The greatest common divisor g of a and b is the unique (positive) common divisor of a and b that is divisible by any other common divisor c. [6]
A multiple of a number is the product of that number and an integer. For example, 10 is a multiple of 5 because 5 × 2 = 10, so 10 is divisible by 5 and 2. Because 10 is the smallest positive integer that is divisible by both 5 and 2, it is the least common multiple of 5 and 2.
a highly abundant number has a sum of positive divisors that is greater than any lesser number; that is, σ(n) > σ(m) for every positive integer m < n. Counterintuitively, the first seven highly abundant numbers are not abundant numbers. a prime number has only 1 and itself as divisors; that is, d(n) = 2
Negative numbers: Real numbers that are less than zero. Because zero itself has no sign, neither the positive numbers nor the negative numbers include zero. When zero is a possibility, the following terms are often used: Non-negative numbers: Real numbers that are greater than or equal to zero. Thus a non-negative number is either zero or positive.
The difference remains positive if we subtract a negative number from a lower negative number. If we subtract a negative number from a positive number, the remainder is their positive sum. If we subtract a positive number from an empty power (martaba khāliyya), the remainder is the same negative, and if we subtract a negative number from an ...
For example, the addition of two rational numbers whose denominators are bounded by b leads to a rational number whose denominator is bounded by b 2, so in the worst case, the bit size could nearly double with just one operation. To expedite the computation, take a ring D for which f and g are in D[x], and take an ideal I such that D/I is a ...
Without the concept of negative number, we don't have positive numbers. Then a compromise, how about negative and non-negative numbers? Sounds strange? -- Taku 02:24 22 May 2003 (UTC) I think it's fine where it is. The discussion of where zero falls is natural for an article called "negative and positive numbers". Evercat 14:24 22 May 2003 (UTC)