Ad
related to: definition of zero in algebra
Search results
Results From The WOW.Com Content Network
0 (zero) is a number representing an empty quantity.Adding (or subtracting) 0 to any number leaves that number unchanged; in mathematical terminology, 0 is the additive identity of the integers, rational numbers, real numbers, and complex numbers, as well as other algebraic structures.
In algebraic geometry, the first definition of an algebraic variety is through zero sets. Specifically, an affine algebraic set is the intersection of the zero sets of several polynomials, in a polynomial ring k [ x 1 , … , x n ] {\displaystyle k\left[x_{1},\ldots ,x_{n}\right]} over a field .
A zero morphism in a category is a generalised absorbing element under function composition: any morphism composed with a zero morphism gives a zero morphism. Specifically, if 0 XY : X → Y is the zero morphism among morphisms from X to Y , and f : A → X and g : Y → B are arbitrary morphisms, then g ∘ 0 XY = 0 XB and 0 XY ∘ f = 0 AY .
An integer is positive if it is greater than zero, and negative if it is less than zero. Zero is defined as neither negative nor positive. The ordering of integers is compatible with the algebraic operations in the following way: If a < b and c < d, then a + c < b + d; If a < b and 0 < c, then ac < bc
In algebra, the zero-product property states that the product of two nonzero elements is nonzero. In other words, =, = = This property is also known as the rule of zero product, the null factor law, the multiplication property of zero, the nonexistence of nontrivial zero divisors, or one of the two zero-factor properties. [1]
Its zeros in the left halfplane are all the negative even integers, and the Riemann hypothesis is the conjecture that all other zeros are along Re(z) = 1/2. In a neighbourhood of a point z 0 , {\displaystyle z_{0},} a nonzero meromorphic function f is the sum of a Laurent series with at most finite principal part (the terms with negative index ...
A composition algebra (,,) consists of an algebra over a field, an involution, and a quadratic form = called the "norm". The characteristic feature of composition algebras is the homomorphism property of N {\displaystyle N} : for the product w z {\displaystyle wz} of two elements w {\displaystyle w} and z {\displaystyle z} of the composition ...
The Middle Ages brought about the acceptance of zero, negative numbers, integers, and fractional numbers, first by Indian and Chinese mathematicians, and then by Arabic mathematicians, who were also the first to treat irrational numbers as algebraic objects (the latter being made possible by the development of algebra). [8]