Search results
Results From The WOW.Com Content Network
A centripetal force (from Latin centrum, "center" and petere, "to seek" [1]) is a force that makes a body follow a curved path.The direction of the centripetal force is always orthogonal to the motion of the body and towards the fixed point of the instantaneous center of curvature of the path.
The ancient Greek understanding of physics was limited to the statics of simple machines (the balance of forces), and did not include dynamics or the concept of work. During the Renaissance the dynamics of the Mechanical Powers, as the simple machines were called, began to be studied from the standpoint of how far they could lift a load, in addition to the force they could apply, leading ...
Every conservative force has a potential energy. By following two principles one can consistently assign a non-relative value to U: Wherever the force is zero, its potential energy is defined to be zero as well. Whenever the force does work, potential energy is lost.
The tangential force is zero at the top (as no work is performed when the motion is perpendicular to the direction of force). Since weight is perpendicular to the direction of motion of the object at the top of the circle and the centripetal force points downwards, the normal force will point down as well.
The SI unit of force is the newton (symbol N), which is the force required to accelerate a one kilogram mass at a rate of one meter per second squared, or kg·m·s −2.The corresponding CGS unit is the dyne, the force required to accelerate a one gram mass by one centimeter per second squared, or g·cm·s −2. A newton is thus equal to ...
The "reactive centrifugal force" discussed in this article is not the same thing as the centrifugal pseudoforce, which is usually what is meant by the term "centrifugal force". Reactive centrifugal force, being one-half of the reaction pair together with centripetal force, is a concept which applies in any reference frame.
The generalized force for a rotation is the torque , since the work done for an infinitesimal rotation is =. The velocity of the k {\displaystyle k} -th particle is given by v k = ω × r k {\displaystyle \mathbf {v} _{k}={\boldsymbol {\omega }}\times \mathbf {r} _{k}}
The work done by a conservative force is equal to the negative of change in potential energy during that process. For a proof, imagine two paths 1 and 2, both going from point A to point B. The variation of energy for the particle, taking path 1 from A to B and then path 2 backwards from B to A, is 0; thus, the work is the same in path 1 and 2 ...