When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Integration by substitution - Wikipedia

    en.wikipedia.org/wiki/Integration_by_substitution

    In calculus, integration by substitution, also known as u-substitution, reverse chain rule or change of variables, [1] is a method for evaluating integrals and antiderivatives. It is the counterpart to the chain rule for differentiation , and can loosely be thought of as using the chain rule "backwards."

  3. Tangent half-angle substitution - Wikipedia

    en.wikipedia.org/.../Tangent_half-angle_substitution

    As t goes from 0 to 1, the point follows the part of the circle in the first quadrant from (1, 0) to (0, 1). Finally, as t goes from 1 to +∞, the point follows the part of the circle in the second quadrant from (0, 1) to (−1, 0). Here is another geometric point of view. Draw the unit circle, and let P be the point (−1, 0).

  4. Change of variables - Wikipedia

    en.wikipedia.org/wiki/Change_of_variables

    Difficult integrals may also be solved by simplifying the integral using a change of variables given by the corresponding Jacobian matrix and determinant. [1] Using the Jacobian determinant and the corresponding change of variable that it gives is the basis of coordinate systems such as polar, cylindrical, and spherical coordinate systems.

  5. Equating coefficients - Wikipedia

    en.wikipedia.org/wiki/Equating_coefficients

    The unique pair of values a, b satisfying the first two equations is (a, b) = (1, 1); since these values also satisfy the third equation, there do in fact exist a, b such that a times the original first equation plus b times the original second equation equals the original third equation; we conclude that the third equation is linearly ...

  6. Integration using Euler's formula - Wikipedia

    en.wikipedia.org/wiki/Integration_using_Euler's...

    At this point we can either integrate directly, or we can first change the integrand to 2 cos 6x − 4 cos 4x + 2 cos 2x and continue from there. Either method gives Either method gives ∫ sin 2 ⁡ x cos ⁡ 4 x d x = − 1 24 sin ⁡ 6 x + 1 8 sin ⁡ 4 x − 1 8 sin ⁡ 2 x + C . {\displaystyle \int \sin ^{2}x\cos 4x\,dx=-{\frac {1}{24 ...

  7. Euler substitution - Wikipedia

    en.wikipedia.org/wiki/Euler_substitution

    The substitutions of Euler can be generalized by allowing the use of imaginary numbers. For example, in the integral +, the substitution + = + can be used. Extensions to the complex numbers allows us to use every type of Euler substitution regardless of the coefficients on the quadratic.

  8. Integral - Wikipedia

    en.wikipedia.org/wiki/Integral

    The volume of a three-dimensional object such as a disc or washer can be computed by disc integration using the equation for the volume of a cylinder, , where is the radius. In the case of a simple disc created by rotating a curve about the x -axis, the radius is given by f ( x ) , and its height is the differential dx .

  9. Explicit substitution - Wikipedia

    en.wikipedia.org/wiki/Explicit_substitution

    One most important example is the "substitution lemma", which with the notation of λx becomes (M x:=N ) y:=P = (M y:=P ) x:=(N y:=P ) (where x≠y and x not free in P) A surprising counterexample, due to Melliès, [ 5 ] shows that the way this rule is encoded in the original calculus of explicit substitutions is not strongly normalizing .