When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Euler substitution - Wikipedia

    en.wikipedia.org/wiki/Euler_substitution

    The substitutions of Euler can be generalized by allowing the use of imaginary numbers. For example, in the integral +, the substitution + = + can be used. Extensions to the complex numbers allows us to use every type of Euler substitution regardless of the coefficients on the quadratic.

  3. Integration by substitution - Wikipedia

    en.wikipedia.org/wiki/Integration_by_substitution

    In calculus, integration by substitution, also known as u-substitution, reverse chain rule or change of variables, [1] is a method for evaluating integrals and antiderivatives. It is the counterpart to the chain rule for differentiation , and can loosely be thought of as using the chain rule "backwards."

  4. Change of variables - Wikipedia

    en.wikipedia.org/wiki/Change_of_variables

    Difficult integrals may also be solved by simplifying the integral using a change of variables given by the corresponding Jacobian matrix and determinant. [1] Using the Jacobian determinant and the corresponding change of variable that it gives is the basis of coordinate systems such as polar, cylindrical, and spherical coordinate systems.

  5. Integration using Euler's formula - Wikipedia

    en.wikipedia.org/wiki/Integration_using_Euler's...

    At this point we can either integrate directly, or we can first change the integrand to 2 cos 6x − 4 cos 4x + 2 cos 2x and continue from there. Either method gives Either method gives ∫ sin 2 ⁡ x cos ⁡ 4 x d x = − 1 24 sin ⁡ 6 x + 1 8 sin ⁡ 4 x − 1 8 sin ⁡ 2 x + C . {\displaystyle \int \sin ^{2}x\cos 4x\,dx=-{\frac {1}{24 ...

  6. Tangent half-angle substitution - Wikipedia

    en.wikipedia.org/.../Tangent_half-angle_substitution

    As t goes from 0 to 1, the point follows the part of the circle in the first quadrant from (1, 0) to (0, 1). Finally, as t goes from 1 to +∞, the point follows the part of the circle in the second quadrant from (0, 1) to (−1, 0). Here is another geometric point of view. Draw the unit circle, and let P be the point (−1, 0).

  7. Substitution (logic) - Wikipedia

    en.wikipedia.org/wiki/Substitution_(logic)

    The ground substitution { x ↦ 2 } cannot have an inverse due to a similar loss of origin information e.g. in (x+2) { x ↦ 2 } = 2+2, even if replacing constants by variables was allowed by some fictitious kind of "generalized substitutions".

  8. Explicit substitution - Wikipedia

    en.wikipedia.org/wiki/Explicit_substitution

    One most important example is the "substitution lemma", which with the notation of λx becomes (M x:=N ) y:=P = (M y:=P ) x:=(N y:=P ) (where x≠y and x not free in P) A surprising counterexample, due to Melliès, [ 5 ] shows that the way this rule is encoded in the original calculus of explicit substitutions is not strongly normalizing .

  9. Contour integration - Wikipedia

    en.wikipedia.org/wiki/Contour_integration

    Now since z 1/2 = e (Log z)/2, on the contour outside the branch cut, we have gained 2 π in argument along γ. (By Euler's identity, e iπ represents the unit vector, which therefore has π as its log. This π is what is meant by the argument of z. The coefficient of ⁠ 1 / 2 ⁠ forces us to use 2 π.)