When.com Web Search

  1. Ad

    related to: step by stoichiometry problems

Search results

  1. Results From The WOW.Com Content Network
  2. Stoichiometry - Wikipedia

    en.wikipedia.org/wiki/Stoichiometry

    Gas stoichiometry is the quantitative relationship (ratio) between reactants and products in a chemical reaction with reactions that produce gases. Gas stoichiometry applies when the gases produced are assumed to be ideal, and the temperature, pressure, and volume of the gases are all known. The ideal gas law is used for these calculations.

  3. Reaction rate constant - Wikipedia

    en.wikipedia.org/wiki/Reaction_rate_constant

    where A and B are reactants C is a product a, b, and c are stoichiometric coefficients,. the reaction rate is often found to have the form: = [] [] Here ⁠ ⁠ is the reaction rate constant that depends on temperature, and [A] and [B] are the molar concentrations of substances A and B in moles per unit volume of solution, assuming the reaction is taking place throughout the volume of the ...

  4. Extent of reaction - Wikipedia

    en.wikipedia.org/wiki/Extent_of_reaction

    Consider the reaction A ⇌ 2 B + 3 C. Suppose an infinitesimal amount of the reactant A changes into B and C. This requires that all three mole numbers change according to the stoichiometry of the reaction, but they will not change by the same amounts.

  5. Molecularity - Wikipedia

    en.wikipedia.org/wiki/Molecularity

    In chemistry, molecularity is the number of molecules that come together to react in an elementary (single-step) reaction [1] and is equal to the sum of stoichiometric coefficients of reactants in the elementary reaction with effective collision (sufficient energy) and correct orientation. [2]

  6. Law of mass action - Wikipedia

    en.wikipedia.org/wiki/Law_of_mass_action

    The generalisation of the law of mass action, in terms of affinity, to equilibria of arbitrary stoichiometry was a bold and correct conjecture. The hypothesis that reaction rate is proportional to reactant concentrations is, strictly speaking, only true for elementary reactions (reactions with a single mechanistic step), but the empirical rate ...

  7. Rate equation - Wikipedia

    en.wikipedia.org/wiki/Rate_equation

    However, complex (multi-step) reactions may or may not have reaction orders equal to their stoichiometric coefficients. This implies that the order and the rate equation of a given reaction cannot be reliably deduced from the stoichiometry and must be determined experimentally, since an unknown reaction mechanism could be either elementary or ...

  8. Reaction mechanism - Wikipedia

    en.wikipedia.org/wiki/Reaction_mechanism

    Instead, the slow step involves two molecules of NO 2. A possible mechanism for the overall reaction that explains the rate law is: 2 NO 2 → NO 3 + NO (slow) NO 3 + CO → NO 2 + CO 2 (fast) Each step is called an elementary step, and each has its own rate law and molecularity. The sum of the elementary steps gives the net reaction.

  9. Flow chemistry - Wikipedia

    en.wikipedia.org/wiki/Flow_chemistry

    Reaction stoichiometry: In batch production this is defined by the concentration of chemical reagents and their volumetric ratio. In flow this is defined by the concentration of reagents and the ratio of their flow rate. Residence time: In batch production this is determined by how long a vessel is held at a given temperature.